全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
580 0
2018-01-25
摘要:Support Vector Machine (SVM) has become a very effective method in sta-tistical machine learning and it has proved that training SVM is to solve Nearest Point pairProblem (NPP) between two disjoint closed convex sets. Later Keerthi pointed out that it isdifficult to apply classical excellent geometric algorithms directly to SVM and so designed anew geometric algorithm for SVM. In this article, a new algorithm for geometrically solvingSVM, Kernel Projection Algorithm, is presented based on the theorem on fixed-points of pro-jection mapping. This new algorithm makes it easy to apply classical geometric algorithmsto solving SVM and is more understandable than Keerthi's. Experiments show that the newalgorithm can also handle large-scale SVM problems. Geometric algorithms for SVM, such asKeerthi's algorithm, require that two closed convex sets be disjoint and otherwise the algo-rithms are meaningless. In this article, this requirement will be guaranteed in theory by usingthe theoretic result on universal kernel functions.

原文链接:http://www.cqvip.com//QK/85226X/200205/6840008.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群