摘要:商品评论文本对消费者和商家的决策都有重要参考价值。用户在评论中使用的语言较为随意,语法结构不规则,给文本分析带来很大难度。正确的句子切分是文本信息抽取和挖掘工作的基础。为解决商品评论中用户省略标点情况下的句子切分问题,基于上下文特征,提出使用
机器学习的方法对评论长句进行切分。根据大规模评论语料的统计特征选取候选句子切分点,对每一个候选句子切分点提取其上下文特征,并根据语料的统计特征,使用逻辑回归对候选切分点进行分类。实验结果表明,该方法能够有效解决商品评论中用户省略标点情况下的句子切分问题。
原文链接:http://www.cqvip.com//QK/95200X/201509/666059253.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)