摘要:偏移量确定了支持向量机和模糊支持向量机(FSVM)的最优分类面位置,对分类性能具有较大影响。为提高模糊支持向量机的识别率,基于Fisher判别分析方法提出一种新的偏移量计算方法,将其用于FSVM多类分类器设计。对3种数据集的测试结果表明,使用新偏移量的FSVM识别率高于使用标准偏移量的FSVM识别率。
原文链接:http://www.cqvip.com//QK/95200X/200919/31835577.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)