全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
471 0
2018-01-26
摘要:为TNNA体免疫缺陷蛋白酶抑制剂的活性,计算了表征分子的组成和拓扑特征的462个分子描述符,用Kennard-Stone方法和随机方法进行了训练集和测试集设计,用Monte Carlo模拟退火方法进行变量筛选,并分别用神经网络。逻辑回归,k-近邻和支持向量学习机方法建立了HIV-1蛋白酶的抑制剂模型.结果表明支持向量学习机优于其余机器学习方法,用SVM方法所建立的最优模型的最后预测正确率达到98.24%.

原文链接:http://www.cqvip.com//QK/91047X/200703/23758055.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群