全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
546 0
2018-01-26
摘要:传统的分类方法对不平衡数据集进行分类时对数据集中少数类的分类准确率不高,而少数类往往对结果的影响尤为重要.为此提出一种适应于不平衡数据集的改进树扩展型朴素贝叶斯(TANC)算法,该算法首先利用Relief算法对样本中的少数类进行权重分配,然后通过训练数据集,使缺失数据补齐,并通过将属性分割成多个有限区间,使连续数据离散化,将修改后的训练集用以训练TANC,最后通过TANC算法对数据集进行分类.基于UCI标准数据集上的实验结果表明,该算法的整体性能优于TANC算法.

原文链接:http://www.cqvip.com//QK/90918A/201405/663939774.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群