摘要:基于Gauss过程机器学习算法,通过分析股票样本的历史数据噪声问题,给出相应的股票样本数据回归预测模型,解决了股票异常数据的检测问题;并用蚁群算法,解决了Gauss过程
机器学习算法的参数自适应问题.实验结果表明,该算法与其他算法相比,可在保证近似准确性的基础上,大幅度提高计算效率,提升用户满意度.
原文链接:http://www.cqvip.com//QK/95191A/201206/44044860.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)