摘要:有效地减少支持向量数目能够提高分类器的鲁棒性和精确性,缩短支持向量机(supportvectorITIachine,SVM)的训练和测试时间.在众多稀疏算法中,截断Hinge损失方法可以显著降低支持向量的数目,但却导致了非凸优化问题.一些研究者使用CCCP(concave—convexprocedure)方法将非凸问题转化为多阶段凸问题求解,不仅增加了额外计算量,而且只能得到局部最优解.为了弥补上述不足,提出了一种基于CCCP的软阈值坐标下降算法.用坐标下降方法求解CCCP子阶段凸问题,提高计算效率;对偶SVM中引入软闽值投影技巧,能够减少更多的支持向量数目,同时选择合适的正则化参数可消除局部最优解的不良影响,提高分类器的分类精度.仿真数据库、UCI数据库和大规模真实数据库的实验证实了所提算法正确性和有效性.
原文链接:http://www.cqvip.com//QK/94913X/201311/47547373.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)