摘要:在网络环境下,Web教育资源规模日益庞大,用户申请资源的过程逐渐复杂化。为此,提出一种基于Agent的Web教育资源预选择分层模型。根据预选择分层模型对Web教育资源进行两层过滤,利用基于语义相似度的过滤算法,将Web教育资源根据语义相似度完成匹配筛选;采用用户反馈信息建立
机器学习模型,使用基于Q学习的过滤算法筛选Web教育资源。实验结果表明,分层模型可供用户选取符合用户需求的资源,具有较好的可扩展性。
原文链接:http://www.cqvip.com//QK/95200X/201309/47142856.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)