摘要:连续属性离散化一直是
机器学习领域中亟待解决的关键问题之一。提出一种基于断点重要性的离散化算法。首先给出粗糙集理论的几个基本概念:决策表、不可分辨关系、信息熵和条件熵,然后对离散化问题进行介绍,给出断点分类的条件熵定义,在此基础上给出了断点选择的粗糙集连续属性离散化算法。仿真结果表明,算法的综合性能优越于文献报道的同类算法。http://www.cqvip.com//QK/97360A/200702/23620385.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)