全部版块 我的主页
论坛 金融投资论坛 六区 金融学(理论版) 量化投资
5953 23
2018-01-27
2017
Pattern Recognition in Stock Data
Kathryn Dover
Harvey Mudd College



Abstract iii
Acknowledgments xi
1  Introduction 1
2  Background 3
2.1  Methods for Pattern Recognition in Stock Data . . . . . . . . 3
2.2  StockPatterns ........................... 7
2.3  ProposedChangeinApproach ................. 10
3  Approach: Geometric Definition of Patterns 11
3.1 TheStandardW.......................... 11
3.2 TheStandardM.......................... 12
3.3 TheStandardHeadandShoulder................ 13
4  Approach: Geometric Definition of Fuzzy Shapes 15
4.1 TheFuzzyW............................ 15
4.2 TheFuzzyM............................ 16
4.3 TheFuzzyHeadandShoulder ................. 17
5  Results: New Approach on Handling the Shapes 19
5.1  ChangeofBasis .......................... 19
5.2  FlippingaShape ......................... 20
5.3  SymmetricRepresentation.................... 21
5.4  FuzzySymmetry ......................... 21
5.5  Categorizing Shapes Using Slopes and Lengths . . . . . . . . 22
5.6  RoughPredictions......................... 23
6  Implementation: Creating an Algorithm to Find Patterns 27
6.1 GaussianProcess ......................... 27
6.2 FindingLocalExtrema ...................... 29
6.3 CreatingVectorsUsingEndPoints ............... 29
6.4 StoringInformationforthePrediction . . . . . . . . . . . . . 29
6.5 RunningtheAlgorithmontheData .............. 29
7  Results: Running the Algorithm on Real Data 33
7.1 Results ............................... 33
7.2 Predictions............................. 36
7.3 PotentialIssues .......................... 40
8 Conclusion 45
8.1 FutureWork............................ 45
8.2 ClosingThoughts......................... 48
Bibliography 49  

Abstract
Finding patterns in high dimensional data can be difficult because it cannot be easily visualized. Many different machine learning methods are able to fit this high dimensional data in order to predict and classify future data but there is typically a large expense on having the machine learn the fit for a certain part of the dataset. This thesis proposes a geometric way of defining different patterns in data that is invariant under size and rotation so it is not so dependent on the input data. Using a Gaussian Process, the pattern is found within stock market data and predictions are made from it.

Pattern Recognition in Stock Data.pdf
大小:(869.28 KB)

只需: 10 个论坛币  马上下载


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2018-1-27 18:07:28
谢谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2018-1-27 21:41:27
谢谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2018-1-27 22:19:22
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2018-1-30 04:47:37
谢谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2018-1-30 18:17:25
谢谢楼主分享。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群