摘要:从粗糙集和决策树两种方法具有的优势互补性出发,提出了一种基于粗糙集和决策树相结合的数据挖掘新方法.以胶合板缺陷检测数据分析为应用对象,利用粗糙集理论对胶合板数据库中的特征信息进行缺陷识别.利用谱系聚类重心距离法对数据进行离散化处理,采用粗糙集进行属性约简,得到低维样本数据,最后用决策树方法产生决策规则.实验证明,这种
数据挖掘方法保留了原始数据的内部特点,加快了获取知识的进程,提高了模型的分类准确率,增强了规则的可解释性,取得了满意的研究结果。http://www.cqvip.com//QK/90188A/200605/21838472.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)