摘要:用于异常检测的机器学习方法,如
神经网络和支持向量机,都对训练样本的噪声非常敏感,进而导致推广能力和分类准确性的下降。为了解决上述问题,论文提出一种新的基于健壮支持向量机的方法。先将RSVM与标准SVM作了对比,然后使用1998 DARPA BSM的数据作为评估数据。实验表明,该方法在入侵检测的准确率、误检率和有噪声情况下的推广能力和运行时等多项指标上都有良好的表现。http://www.cqvip.com//QK/91690X/200422/10019849.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)