摘要:交通流量预测一直是实时自适应交通控制的关键问题。以城市道路网络中典型的两相邻交叉口为研究对象,提出了基于粒子群优化的RBF神经网络的信号交叉口交通流量预测模型。该模型以RBF
神经网络为基础,采用分组优化策略,用粒子群优化算法对基函数的中心、方差和RBF网络权值进行优化,从而提高了网络的预测精度。通过仿真,并与其他算法对比,表明了本文方法的有效性。http://www.cqvip.com//QK/91479X/200607/22359331.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)