全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
565 0
2017-09-25
摘要:针对实际交通流变化具有较明显的动态性、周相似性和相关性,提出一种基于交通流的时空变化特性和RBF神经网络的短时交通流预测方法。该方法充分挖掘和利用了交通流时间序列的周相似性和相关性,以及相邻路段上交通流的相互影响因素,结合RBF神经网络自学习、自组织、自适应功能和大范围的数据融合特性对交通流进行短时预测。用实例进行了仿真计算和分析,结果表明该方法能够提高交通流的预测精度。

原文链接:http://www.cqvip.com/Main/Detail.aspx?id=37015272

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群