摘要:模糊神经网络应用于热力系统建模,虽能取得较好的效果,但当模糊规则较多时,网络学习速度较慢。针对这个问题,对传统的模糊神经网络进行了改进。利用Kohonen自组织网络对数据信息进行聚类。然后利用粗糙集规则约减的方法,获取模糊神经网络最小规则,以提高模糊神经网络的学习速度。经过锅炉汽压回路模型的仿真实验结果表明:粗糙模糊神经网络学习速度较传统模糊
神经网络有较大提高,同时网络误差有所降低。http://www.cqvip.com//QK/93884X/200408/10395309.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)