摘要:提出了一种具有实用意义的形态滤波
神经网络模型及其网络参数的模拟退火优化算法. 通过分析指出, 形态滤波网络的优化设计过程实际上就是网络参数(结构元素)不断调整、逐步适应图像环境的优化学习过程, 从而将目标客体的特征规律反映到网络结构上来, 赋予结构元素特定的知识, 使形态滤波过程融入特有的智能, 以实现对复杂变化的图像具有良好的滤波性能和稳健的适应能力. 为结合运动图像目标的检测需要, 采用了渐近收缩误差、适时校正网络权值的动态跟踪学习算法. 通过实验结果可以看出, 该算法不仅能适应复杂多样的背景环境, 而且对运动目标的持续检测能力具有位移不变、伸缩不变和旋转不变的特性.http://www.cqvip.com//QK/98492X/200306/8072944.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)