蓝色 发表于 2012-5-26 16:07 
你把你的结果列出来
刚刚发的帖子是用我那种方法做的,现在发的帖子是用您说的方法做的
xi:xtreg fatalityrate sb_useage speed65 speed70 ba08 drinkage21 lincome age i.year i.fips
i.year _Iyear_1983-1997 (naturally coded; _Iyear_1983 omitted)
i.fips _Ifips_1-56 (naturally coded; _Ifips_1 omitted)
Random-effects GLS regression Number of obs = 556
Group variable: fips Number of groups = 51
R-sq: within = 0.7506 Obs per group: min = 8
between = 1.0000 avg = 10.9
overall = 0.9098 max = 15
Random effects u_i ~ Gaussian Wald chi2(71) = 4881.98
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
------------------------------------------------------------------------------
fatalityrate | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
sb_useage | -.0037186 .0011328 -3.28 0.001 -.0059389 -.0014982
speed65 | -.0007833 .0004241 -1.85 0.065 -.0016145 .0000479
speed70 | .0008042 .0003402 2.36 0.018 .0001375 .0014709
ba08 | -.0008225 .0003516 -2.34 0.019 -.0015117 -.0001333
drinkage21 | -.0011337 .0005353 -2.12 0.034 -.0021828 -.0000845
lincome | .0062643 .0038683 1.62 0.105 -.0013173 .013846
age | .001318 .0003834 3.44 0.001 .0005667 .0020694
_Iyear_1984 | -.0004319 .0011763 -0.37 0.713 -.0027374 .0018736
_Iyear_1985 | -.0010707 .0011803 -0.91 0.364 -.0033839 .0012426
_Iyear_1986 | -.0005777 .0013086 -0.44 0.659 -.0031426 .0019871
_Iyear_1987 | -.0008722 .0015532 -0.56 0.574 -.0039165 .002172
_Iyear_1988 | -.001885 .001751 -1.08 0.282 -.005317 .001547
_Iyear_1989 | -.0041766 .0019484 -2.14 0.032 -.0079954 -.0003578
_Iyear_1990 | -.005266 .0021205 -2.48 0.013 -.0094221 -.0011098
_Iyear_1991 | -.0066622 .0022348 -2.98 0.003 -.0110424 -.002282
_Iyear_1992 | -.008518 .0024085 -3.54 0.000 -.0132386 -.0037973
_Iyear_1993 | -.0089399 .0025409 -3.52 0.000 -.0139199 -.0039599
_Iyear_1994 | -.0096297 .0026961 -3.57 0.000 -.014914 -.0043454
_Iyear_1995 | -.0101123 .0028675 -3.53 0.000 -.0157324 -.0044922
_Iyear_1996 | -.0110766 .0030447 -3.64 0.000 -.017044 -.0051091
_Iyear_1997 | -.0116075 .0032097 -3.62 0.000 -.0178984 -.0053167
_Ifips_2 | .006243 .0024346 2.56 0.010 .0014712 .0110147
_Ifips_4 | .0010385 .0008262 1.26 0.209 -.0005809 .0026578
_Ifips_5 | .0019924 .000756 2.64 0.008 .0005106 .0034742
_Ifips_6 | -.0046545 .0015474 -3.01 0.003 -.0076872 -.0016217
_Ifips_8 | -.0046086 .0013365 -3.45 0.001 -.0072281 -.0019891
_Ifips_9 | -.0158628 .0022035 -7.20 0.000 -.0201815 -.0115441
_Ifips_10 | -.0073367 .0014704 -4.99 0.000 -.0102186 -.0044547
_Ifips_11 | -.0108581 .0023055 -4.71 0.000 -.0153769 -.0063393
_Ifips_12 | -.0047175 .0016173 -2.92 0.004 -.0078874 -.0015476
_Ifips_13 | -.002997 .0010758 -2.79 0.005 -.0051056 -.0008884
_Ifips_15 | -.007201 .0013441 -5.36 0.000 -.0098354 -.0045665
_Ifips_16 | .003059 .0009406 3.25 0.001 .0012155 .0049026
_Ifips_17 | -.0073873 .0013184 -5.60 0.000 -.0099712 -.0048033
_Ifips_18 | -.006817 .0008167 -8.35 0.000 -.0084177 -.0052163
_Ifips_19 | -.0057302 .0008816 -6.50 0.000 -.007458 -.0040024
_Ifips_20 | -.0054187 .0009178 -5.90 0.000 -.0072175 -.0036199
_Ifips_21 | -.0014577 .0006344 -2.30 0.022 -.002701 -.0002143
_Ifips_22 | .0031179 .0009562 3.26 0.001 .0012437 .0049921
_Ifips_23 | -.0081397 .0009234 -8.81 0.000 -.0099495 -.0063298
_Ifips_24 | -.0083354 .0015696 -5.31 0.000 -.0114117 -.005259
_Ifips_25 | -.0163695 .0017288 -9.47 0.000 -.0197578 -.0129812
_Ifips_26 | -.0060909 .0010698 -5.69 0.000 -.0081877 -.0039942
_Ifips_27 | -.0107385 .0011613 -9.25 0.000 -.0130146 -.0084623
_Ifips_28 | .0076234 .0010256 7.43 0.000 .0056133 .0096336
_Ifips_29 | -.004406 .0009399 -4.69 0.000 -.0062482 -.0025637
_Ifips_30 | .0008326 .0006533 1.27 0.202 -.0004478 .002113
_Ifips_31 | -.0069169 .0008188 -8.45 0.000 -.0085217 -.0053121
_Ifips_32 | .0012562 .0012549 1.00 0.317 -.0012033 .0037157
_Ifips_33 | -.0107429 .0014308 -7.51 0.000 -.0135473 -.0079386
_Ifips_34 | -.0146688 .0018937 -7.75 0.000 -.0183804 -.0109573
_Ifips_35 | .005655 .0010951 5.16 0.000 .0035086 .0078014
_Ifips_36 | -.0093885 .0016377 -5.73 0.000 -.0125983 -.0061787
_Ifips_37 | -.0012724 .0007858 -1.62 0.105 -.0028125 .0002677
_Ifips_38 | -.0090427 .0007569 -11.95 0.000 -.0105262 -.0075592
_Ifips_39 | -.008499 .0009243 -9.19 0.000 -.0103106 -.0066873
_Ifips_40 | -.0057419 .0006519 -8.81 0.000 -.0070196 -.0044643
_Ifips_41 | -.0039604 .0009906 -4.00 0.000 -.0059021 -.0020188
_Ifips_42 | -.0095413 .0013033 -7.32 0.000 -.0120958 -.0069868
_Ifips_44 | -.0162439 .0012424 -13.08 0.000 -.0186789 -.013809
_Ifips_45 | .0028703 .000765 3.75 0.000 .0013708 .0043697
_Ifips_46 | -.0026968 .0007242 -3.72 0.000 -.0041163 -.0012773
_Ifips_47 | -.0009243 .0008337 -1.11 0.268 -.0025583 .0007096
_Ifips_48 | -.0013714 .0012951 -1.06 0.290 -.0039096 .0011669
_Ifips_49 | .0027227 .0021511 1.27 0.206 -.0014933 .0069387
_Ifips_50 | -.0062963 .0008769 -7.18 0.000 -.0080149 -.0045777
_Ifips_51 | -.0088905 .0012492 -7.12 0.000 -.0113389 -.006442
_Ifips_53 | -.0086983 .0011859 -7.33 0.000 -.0110226 -.006374
_Ifips_54 | -.0009197 .0010392 -0.88 0.376 -.0029565 .0011171
_Ifips_55 | -.008633 .0009214 -9.37 0.000 -.0104389 -.0068272
_Ifips_56 | -.0010498 .0010567 -0.99 0.320 -.0031209 .0010213
_cons | -.0730503 .0377184 -1.94 0.053 -.146977 .0008765
-------------+----------------------------------------------------------------
sigma_u | 0
sigma_e | .00161752
rho | 0 (fraction of variance due to u_i)
------------------------------------------------------------------------------