摘要:为了对肺结节的良、恶性诊断形成定量的客观分析和提高良、恶性的分类正确率,针对肺结节CT图像提出了一种基于Bootstrap-异质SVM的集成学习方法.首先,采用模糊聚类图像分割方法提取肺结节,计算提取出的结节特征参数用于学习分类.然后,以支持向量机(SVM)在不同核函数下的不同性能构造高差异性的子学习器,在子学习器中引入Bootstrap算法来提高其学习精度,通过集成学习方法实现学习器分类性能的整体改善.对146个(40个良性,106个恶性)肺结节样本分别利用单个SVM、BP神经网络和Bootstrap-异质SVM集成学习方法进行了学习测试,获得的最高分类正确率分别为80%,、82%,和90%,.实验结果表明:提出的Bootstrap-异质SVM集成学习方法将单个SVM分类器的最高正确率提高了10%,,同时也获得了高于BP神经网络8%,的分类正确率和较好的学习稳定性,有效地改善了
机器学习在不平衡数据集下对肺结节良恶性的分类能力.
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)