全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
596 0
2018-02-10
摘要:为了提高高维数据集合离群数据挖掘效率,在分析了传统的离群数据挖掘算法优点和缺点的基础上,提出了一种基于局部线性加权的离群点检测算法。该算法利用LLE算法的思想寻找样本数据的内在嵌入分布,并通过距离公式和离群点权值判别式进行权值数据判定,根据权值的大小标识出数据集中的离群点。仿真实验的结果表明了该方法能够有效地发现高维数据集中的离群点。与此同时,该算法具有参数估计简单、参数影响不大等优点。该算法为离群点检测问题的机器学习提供了一条新的途径。

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群