全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
589 0
2018-02-12
摘要:为准确预测矿井煤与瓦斯突出的危险性,针对反向BP神经网络收敛差的缺点,分别采用基于MATLAB神经网络工具箱中的VLBP和LMBP算法的改进BP神经网络模型对煤与瓦斯突出的危险性进行了预测.根据煤与瓦斯突出的特点,选取开采深度、瓦斯压力、瓦斯放散初速度、煤的坚固性系数与地质破坏程度等五个关键影响因素作为煤与瓦斯突出的评判指标,建立了煤与瓦斯突出预测的神经网络模型.实际应用效果表明,采用基于MATLAB神经网络工具箱的BP网络模型,能克服一般BP网络收敛较慢的缺点,能加快收敛速度;运用LMBP算法比VLBP算法快,但需较大计算机内存;与常规预测方法相比较,该模型的预测准确性高,能有效地预测煤与瓦斯突出的危险性.

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群