全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
633 0
2018-02-15
摘要:针对医学影像特征具有模糊性和不确定性的特点,提出一种基于模糊贝叶斯网络的影像诊断预测模型。该模型使用高斯混合模型(GMM)对连续的视觉特征进行模糊量化处理,利用专家知识根据病症与影像特征之间的因果关系建立混合贝叶斯网络结构;由数据通过机器学习确定网络参数;采用概率推理定量估计病症的发生概率,从而建立一个可计算的预测模型。将该方法应用于星形细胞瘤分级预测,实验结果得出83.33%的正确识别率,远远超过使用最小近邻分类器(K-NN)实现连续变量硬(crisp)量化的贝叶斯网络模型,更合理地表达了具有模糊性、不确定性的专业领域的结构性知识,为星形细胞瘤恶性程度预测提供了新的辅助手段。

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群