摘要:利用广东省滨江流域的水文观测资料,建立了以前期降水量为预报因子、以水位为输出的BP人工神经网络水文预报模型.首先采用了合理的方法进行样本组织,进而利用最优子集回归技术进行输入因子的确定,然后进行了不同隐层节点数、不同转移函数、不同训练算法的组合试验,确定了应用于水文预报中的优化BP
神经网络:网络结构为8-9-1;转移函数的组合方式为tansig-线性函数;训练算法为采用evenberg-Marquardt(Lm)算法.为便于精度分析,还采用了最优子集回归模型作了研究.结果表明,优化BP网络模型无论在拟合精度还是在预测精度上都高于最优子集模型.总的来说BP网络是一种精度较高的水文预测模型.
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)