全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
447 0
2018-02-16
摘要:近红外光谱的主成分由非线性迭代偏最小二乘法(NIPALS)求出,主成分作标准化处理后,作为B-P神经网络的输入结点进行非线性迭代。该法的优点是,充分利用了全光谱的数据,得到消除噪声后的最佳主成分,能建立非线性模型,B-P神经网络迭代时间显著缩短,用该法对大麦中的淀粉含量进行了定量分析研究。结果为:校准和预测的相关系数分别为0.981和0.953,校准和预测的相对标准偏差分别为1.70%和2.48%

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群