全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
439 0
2018-02-16
摘要:针对传统的应用数学模型方法在短时交通流预测精度和实时性方面存在的问题,论文从非线性时阅序列的角度对短时交通流量预测进行探讨,提出采用基于混沌理论的RBF神经网络预测方法。首先在采用小数据量的Lyapunav指数计算方法判定交通流存在混沌的前提下,对交通流量数据进行相空间重构。构建了RBF神经网络,并对模拟产生的Lorenz和Rossler混沌时间序列数据以及实际采集的高速公路交通流量数据进行了仿真研究。结果表明,该方法对模拟产生的混沌时间序列具有很好的预测效果,在交通流量的短时预测上也具有较高的预测精度。

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群