全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
631 0
2018-02-19
摘要:运用两阶段学习方法构建径向基函数(RBF)神经网络模型预测混沌时间序列.在利用非监督学习算法确定网络隐层中心时,提出了一种基于高斯基的距离度量,并联合输入输出聚类的策略.基于Fisher可分离率设计高斯基距离度量中的惩罚因子,可以提高聚类的性能.而输入输出聚类策略的引入,建立了聚类性能与网络预测性能之间的联系.因此,根据本文方法构建的网络模型,一方面可以加快网络训练的速度,另一方面可以提高预测性能.将该方法对Mackey-Glass,Loren互和Logistic混沌时间序列进行了预测仿真研究,仿真结果表明了该方法的有效性.

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群