全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
552 0
2018-02-20
摘要:真实世界问题中,不同类别的样本在数目上往往差别很大,而传统机器学习方法难以对小类样本进行正确分类,若小类的样本是足够重要的,就会带来较大的损失.因此,对类别分布不平衡数据的学习已成为机器学习目前面临的一个挑战.受计算机视觉中级联模型的启发,提出一种针对不平衡数据的分类方法BalanceCascade.该方法逐步缩小大类别使数据集趋于平衡,在此过程中训练得到的一系列分类器通过集成方式对预测样本进行分类.实验结果表明,该方法可以有效地提高在不平衡数据上的分类性能,尤其是在分类性能受数据的不平衡性严重影响的情况下.

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群