全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件
1176 1
2009-12-01
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2009-12-1 10:17:30
Chapter 12
COMPUTATIONAL PROBLEMS AND METHODS
RICHARD E. QUANDT*
Princeton University
Contents
1. Introduction
2. Matrix methods
2.1. Methods for solving ,4a = c
2.2. Singular value decomposition
2.3. Sparse matrix methods
3. Common functions requiring optimization
3. I. Likelihood functions
3.2. Generalized distance functions
3.3. Functions in optimal control
4. Algorithms for optimizing functions of many variables
4. I. Introduction
4.2. Methods employing no derivatives
4.3. Methods employing first and second derivatives
4.4. Methods employing first derivatives
5. Special purpose algorithms and simplifications
5.1. Jacobi and Gauss-Seidel methods
5.2. Parke’s Algorithm A
5.3. The EM algorithm
5.4. Simplified Jacobian computation
6. Further aspects of algorithms
6.1. Computation of derivatives
6.2. Linear searches
6.3. Stopping criteria
6.4. Multiple optima
7. Particular problems in optimization
7.1. Smoothing of non-differentiable functions
7.2. Unbounded likelihood functions and other false optima 742
7.3. Constraints on the parameters 744
8. Numerical integration 747
8. I. Monte Carlo integration 749
8.2. Polynomial approximations 750
8.3. Evaluation of multivariate normal integrals 751
8.4. Special cases of the multivariate normal integral 753
9. The generation of random numbers 755
9.1. The generation of uniformly distributed variables 756
9.2. The generation of normally distributed variables 757
References 760
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群