全部版块 我的主页
论坛 经济学人 二区 学术资源/课程/会议/讲座 论文版
19972 20
2009-12-02
★主成分分析的主要目的是希望用较少的变量去解释原来资料中的大部分变异,将我们手中许多相关性很高的变量转化成彼此相互独立或不相关的变量。通常是选出比原始变量个数少,能解释大部分资料中的变异的几个新变量,即所谓主成分,并用以解释资料的综合性指标。由此可见,主成分分析实际上是一种降维方法。

  主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太 多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的主成分分析法是一种数学变换的方法, 它把给定的一组相关变量通过线性变换转成另一组不相关的变量,这些新的变量按照方差依次递减的顺序排列。在数学变换中保持变量的总方差不变,使第一变量具有最大的方差,称为第一主成分,第二变量的方差次大,并且和第一变量不相关,称为第二主成分。依次类推,I个变量就有I个主成分。

  其中Li为p维正交化向量(Li*Li=1),Zi之间互不相关且按照方差由大到小排列,则称Zi为X的第I个主成分。设X的协方差矩阵为Σ,则Σ必为半正定对称矩阵,求特征值λi(按从大到小排序)及其特征向量,可以证明,λi所对应的正交化特征向量,即为第I个主成分Zi所对应的系数向量Li,而Zi的方差贡献率定义为λi/Σλj,通常要求提取的主成分的数量k满足Σλk/Σλj>0.85。

  分析步骤:数据标准化;求相关系数矩阵;一系列正交变换,使非对角线上的数置0,加到主对角上;得特征根xi(即相应那个主成分引起变异的方差),并按照从大到小的顺序把特征根排列;

求各个特征根对应的特征向量;用下式计算每个特征根的贡献率Vi;Vi=xi/(x1+x2+........),根据特征根及其特征向量解释主成分物理意义。
因子分析法(Factor Analysis)就是寻找这些公共因子的模型分析方法,它是在主成分的基础上构筑若干意义较为明确的公因子,以它们为框架分解原变量,以此考察原变量间的联系与区别。

最近我写了一篇小论文,大体的思路就是利用主成分分析法分析某省地区11地市的19项指标,根据spss软件得出三项主要成分,并且自己命名,三项累积贡献率要大于85%,根据各个因子的含义进行命名,然后得出综合评价的得分,得出内蒙古11地市之间的差距,再进一步分析与发达城市的差距的原因。

下面有篇用主成分分析法和因子分析法非常好的论文,是在cnki下载的,一直都很喜欢,希望大家一起学习吧,希望大家能有所启发,希望大家都顶一下,谢谢了.
有很多说的不对的地方,希望大家见谅!
附件列表

城市经济活力的综合评价指标体系.kdh.pdf

大小:27.51 KB

只需: 1 个论坛币  马上下载

中国战略空间规划的复兴和创新.kdh.pdf

大小:61.29 KB

只需: 1 个论坛币  马上下载

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2009-12-2 08:31:15
[biggrin][biggrin]
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-12-2 10:37:55
借鉴一下,谢谢楼主~~~~~~··
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-12-3 20:45:55
呵呵 谢谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-12-7 15:12:10
感觉还不错哦,学习了。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-12-9 15:32:19
谢谢分享~很及时呵呵
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群