全部版块 我的主页
论坛 经济学论坛 三区 微观经济学 经济金融数学专区
2858 3
2009-12-03
  

【资料名称】:
An Introduction to Continuous Optimization
【资料作者】:
Niclas Andreasson, Anton Evgrafov, M. Patriksson
【出版社】:   
Studentlitteratur AB
【简介及目录】:   

Product details  
  • Paperback: 400 pages
  • Publisher: Studentlitteratur AB,Sweden (8 May 2006)
  • Language English
  • ISBN-10: 9144044550

Product Description  
Optimisation, or mathematical programming, is a fundamentalsubjectwithin decision science and operations research, in whichmathematicaldecision models are constructed, analysed, and solved. Thisbook'sfocus lies on providing a basis for the analysis of optimisationmodelsand of candidate optimal solutions, especially forcontinuousoptimisation models. Themain part of the mathematical materialtherefore concerns the analysisand linear algebra that underlie theworkings of convexity and duality,and necessary/sufficientlocal/global optimality conditions forunconstrained and constrainedoptimisation problems. Natural algorithmsare then developed from theseoptimality conditions, and their mostimportant convergencecharacteristics are analysed. This book answersmany more questions ofthe form: 'Why/why not?' than 'How?'.This choiceof focus is incontrast to books mainly providing numerical guidelinesas to howoptimisation problems should be solved. We use onlyelementarymathematics in the development of the book, yet arerigorousthroughout. This book provides lecture, exercise and readingmaterialfor a first course on continuous optimisation andmathematicalprogramming, geared towards third-year students, and hasalready beenused as such, in the form of lecture notes, for nearly tenyears. Thisbook can be used in optimisation courses at any engineeringdepartmentas well as in mathematics, economics, and business schools.It is aperfect starting book for anyone who wishes to develophis/herunderstanding of the subject of optimisation, before actuallyapplyingit.

Table of Contents
I Introduction 1
1 Modelling and classification 3
1.1 Modelling of optimization problems . . . . . . . . . . . . . 3
1.2 A quick glance at optimization history . . . . . . . . . . . 9
1.3 Classification of optimization models . . . . . . . . . . . . 11
1.4 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5 Applications and modelling examples . . . . . . . . . . . . 15
1.6 Defining the field . . . . . . . . . . . . . . . . . . . . . . . 16
1.7 On optimality conditions . . . . . . . . . . . . . . . . . . . 16
1.8 Soft and hard constraints . . . . . . . . . . . . . . . . . . 18
1.8.1 Definitions . . . . . . . . . . . . . . . . . . . . . . 18
1.8.2 A derivation of the exterior penalty function . . . 19
1.9 A road map through the material . . . . . . . . . . . . . . 20
1.10 On the background of this book and a didactics statement 25
1.11 Illustrating the theory . . . . . . . . . . . . . . . . . . . . 26
1.12 Notes and further reading . . . . . . . . . . . . . . . . . . 27
1.13 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
II Fundamentals 31
2 Analysis and algebra—A summary 33
2.1 Reductio ad absurdum . . . . . . . . . . . . . . . . . . . . 33
2.2 Linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3 Convex analysis 41
3.1 Convexity of sets . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Polyhedral theory . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.1 Convex hulls . . . . . . . . . . . . . . . . . . . . . 423.2.2 Polytopes . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.3 Polyhedra . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.4 The Separation Theorem and Farkas’ Lemma . . . 52
3.3 Convex functions . . . . . . . . . . . . . . . . . . . . . . . 57
3.4 Application: the projection of a vector onto a convex set . 66
3.5 Notes and further reading . . . . . . . . . . . . . . . . . . 69
3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
III Optimality Conditions 73
4 An introduction to optimality conditions 75
4.1 Local and global optimality . . . . . . . . . . . . . . . . . 75
4.2 Existence of optimal solutions . . . . . . . . . . . . . . . . 78
4.2.1 A classic result . . . . . . . . . . . . . . . . . . . . 78
4.2.2 ∗Non-standard results . . . . . . . . . . . . . . . . 81
4.2.3 Special optimal solution sets . . . . . . . . . . . . 83
4.3 Optimality in unconstrained optimization . . . . . . . . . 84
4.4 Optimality for optimization over convex sets . . . . . . . . 88
4.5 Near-optimality in convex optimization . . . . . . . . . . . 95
4.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.6.1 Continuity of convex functions . . . . . . . . . . . 96
4.6.2 The Separation Theorem . . . . . . . . . . . . . . 98
4.6.3 Euclidean projection . . . . . . . . . . . . . . . . . 99
4.6.4 Fixed point theorems . . . . . . . . . . . . . . . . 100
4.7 Notes and further reading . . . . . . . . . . . . . . . . . . 106
4.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5 Optimality conditions 111
5.1 Relations between optimality conditions and CQs at a glance111
5.2 A note of caution . . . . . . . . . . . . . . . . . . . . . . . 112
5.3 Geometric optimality conditions . . . . . . . . . . . . . . 114
5.4 The Fritz John conditions . . . . . . . . . . . . . . . . . . 118
5.5 The Karush–Kuhn–Tucker conditions . . . . . . . . . . . . 124
5.6 Proper treatment of equality constraints . . . . . . . . . . 128
5.7 Constraint qualifications . . . . . . . . . . . . . . . . . . . 130
5.7.1 Mangasarian–Fromovitz CQ (MFCQ) . . . . . . . 131
5.7.2 Slater CQ . . . . . . . . . . . . . . . . . . . . . . . 131
5.7.3 Linear independence CQ (LICQ) . . . . . . . . . . 132
5.7.4 Affine constraints . . . . . . . . . . . . . . . . . . . 132
5.8 Sufficiency of the KKT conditions under convexity . . . . 133
5.9 Applications and examples . . . . . . . . . . . . . . . . . . 135
5.10 Notes and further reading . . . . . . . . . . . . . . . . . . 137
5.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6 Lagrangian duality 141
6.1 The relaxation theorem . . . . . . . . . . . . . . . . . . . 141
6.2 Lagrangian duality . . . . . . . . . . . . . . . . . . . . . . 142
6.2.1 Lagrangian relaxation and the dual problem . . . . 142
6.2.2 Global optimality conditions . . . . . . . . . . . . 147
6.2.3 Strong duality for convex programs . . . . . . . . . 149
6.2.4 Strong duality for linear and quadratic programs . 154
6.2.5 Two illustrative examples . . . . . . . . . . . . . . 156
6.3 Differentiability properties of the dual function . . . . . . 158
6.3.1 Subdifferentiability of convex functions . . . . . . . 158
6.3.2 Differentiability of the Lagrangian dual function . 162
6.4 ∗Subgradient optimization methods . . . . . . . . . . . . . 164
6.4.1 Convex problems . . . . . . . . . . . . . . . . . . . 164
6.4.2 Application to the Lagrangian dual problem . . . . 170
6.4.3 The generation of ascent directions . . . . . . . . . 173
6.5 ∗Obtaining a primal solution . . . . . . . . . . . . . . . . 174
6.5.1 Differentiability at the optimal solution . . . . . . 175
6.5.2 Everett’s Theorem . . . . . . . . . . . . . . . . . . 176
6.6 ∗Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . 177
6.6.1 Analysis for convex problems . . . . . . . . . . . . 177
6.6.2 Analysis for differentiable problems . . . . . . . . . 179
6.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.7.1 Electrical networks . . . . . . . . . . . . . . . . . . 181
6.7.2 A Lagrangian relaxation of the traveling salesman
problem . . . . . . . . . . . . . . . . . . . . . . . . 185
6.8 Notes and further reading . . . . . . . . . . . . . . . . . . 189
6.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
IV Linear Programming 195
7 Linear programming: An introduction 197
7.1 The manufacturing problem . . . . . . . . . . . . . . . . . 197
7.2 A linear programming model . . . . . . . . . . . . . . . . 198
7.3 Graphical solution . . . . . . . . . . . . . . . . . . . . . . 199
7.4 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . 199
7.4.1 An increase in the number of large pieces available 200
7.4.2 An increase in the number of small pieces available 201
7.4.3 A decrease in the price of the tables . . . . . . . . 202
7.5 The dual of the manufacturing problem . . . . . . . . . . 203
7.5.1 A competitor . . . . . . . . . . . . . . . . . . . . . 203
7.5.2 A dual problem . . . . . . . . . . . . . . . . . . . . 203
7.5.3 Interpretations of the dual optimal solution . . . . 204
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2009-12-3 14:53:27
Table of Contents(continued)

8 Linear programming models 205
8.1 Linear programming modelling . . . . . . . . . . . . . . . 205
8.2 The geometry of linear programming . . . . . . . . . . . . 210
8.2.1 Standard form . . . . . . . . . . . . . . . . . . . . 211
8.2.2 Basic feasible solutions and the Representation Theorem
. . . . . . . . . . . . . . . . . . . . . . . . . . 214
8.2.3 Adjacent extreme points . . . . . . . . . . . . . . . 220
8.3 Notes and further reading . . . . . . . . . . . . . . . . . . 223
8.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
9 The simplex method 225
9.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 225
9.1.1 A BFS is known . . . . . . . . . . . . . . . . . . . 226
9.1.2 A BFS is not known: phase I & II . . . . . . . . . 232
9.1.3 Alternative optimal solutions . . . . . . . . . . . . 236
9.2 Termination . . . . . . . . . . . . . . . . . . . . . . . . . . 237
9.3 Computational complexity . . . . . . . . . . . . . . . . . . 238
9.4 Notes and further reading . . . . . . . . . . . . . . . . . . 238
9.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
10 LP duality and sensitivity analysis 241
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 241
10.2 The linear programming dual . . . . . . . . . . . . . . . . 242
10.2.1 Canonical form . . . . . . . . . . . . . . . . . . . . 243
10.2.2 Constructing the dual . . . . . . . . . . . . . . . . 243
10.3 Linear programming duality theory . . . . . . . . . . . . . 247
10.3.1 Weak and strong duality . . . . . . . . . . . . . . . 247
10.3.2 Complementary slackness . . . . . . . . . . . . . . 250
10.4 The dual simplex method . . . . . . . . . . . . . . . . . . 254
10.5 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . 257
10.5.1 Perturbations in the objective function . . . . . . . 258
10.5.2 Perturbations in the right-hand side coefficients . . 259
10.6 Notes and further reading . . . . . . . . . . . . . . . . . . 260
10.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
V Algorithms 265
11 Unconstrained optimization 267
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 267
11.2 Descent directions . . . . . . . . . . . . . . . . . . . . . . 269
11.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . 269
11.2.2 Newton’s method and extensions . . . . . . . . . . 271
11.3 The line search problem . . . . . . . . . . . . . . . . . . . 275
11.3.1 A characterization of the line search problem . . . 275
11.3.2 Approximate line search strategies . . . . . . . . . 276
11.4 Convergent algorithms . . . . . . . . . . . . . . . . . . . . 279
11.5 Finite termination criteria . . . . . . . . . . . . . . . . . . 281
11.6 A comment on non-differentiability . . . . . . . . . . . . . 283
11.7 Trust region methods . . . . . . . . . . . . . . . . . . . . . 284
11.8 Conjugate gradient methods . . . . . . . . . . . . . . . . . 285
11.8.1 Conjugate directions . . . . . . . . . . . . . . . . . 286
11.8.2 Conjugate direction methods . . . . . . . . . . . . 287
11.8.3 Generating conjugate directions . . . . . . . . . . . 288
11.8.4 Conjugate gradient methods . . . . . . . . . . . . . 289
11.8.5 Extension to non-quadratic problems . . . . . . . . 292
11.9 A quasi-Newton method: DFP . . . . . . . . . . . . . . . 293
11.10Convergence rates . . . . . . . . . . . . . . . . . . . . . . 296
11.11Implicit functions . . . . . . . . . . . . . . . . . . . . . . . 296
11.12Notes and further reading . . . . . . . . . . . . . . . . . . 297
11.13Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
12 Optimization over convex sets 303
12.1 Feasible direction methods . . . . . . . . . . . . . . . . . . 303
12.2 The Frank–Wolfe algorithm . . . . . . . . . . . . . . . . . 305
12.3 The simplicial decomposition algorithm . . . . . . . . . . 308
12.4 The gradient projection algorithm . . . . . . . . . . . . . 311
12.5 Application: traffic equilibrium . . . . . . . . . . . . . . . 317
12.5.1 Model analysis . . . . . . . . . . . . . . . . . . . . 317
12.5.2 Algorithms and a numerical example . . . . . . . . 319
12.6 Notes and further reading . . . . . . . . . . . . . . . . . . 321
12.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
13 Constrained optimization 325
13.1 Penalty methods . . . . . . . . . . . . . . . . . . . . . . . 325
13.1.1 Exterior penalty methods . . . . . . . . . . . . . . 326
13.1.2 Interior penalty methods . . . . . . . . . . . . . . 330
13.1.3 Computational considerations . . . . . . . . . . . . 333
13.1.4 Applications and examples . . . . . . . . . . . . . 334
13.2 Sequential quadratic programming . . . . . . . . . . . . . 337
13.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . 337
13.2.2 A penalty-function based SQP algorithm . . . . . 340
13.2.3 A numerical example on the MSQP algorithm . . . 345
13.2.4 On recent developments in SQP algorithms . . . . 346
13.3 A summary and comparison . . . . . . . . . . . . . . . . . 346
13.4 Notes and further reading . . . . . . . . . . . . . . . . . . 347
13.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
VI Appendix 351
A Answers to the exercises 353
Chapter 1: Modelling and classification . . . . . . . . . . . . . 353
Chapter 3: Convexity . . . . . . . . . . . . . . . . . . . . . . . 356
Chapter 4: An introduction to optimality conditions . . . . . . 358
Chapter 5: Optimality conditions . . . . . . . . . . . . . . . . . 360
Chapter 6: Lagrangian duality . . . . . . . . . . . . . . . . . . 361
Chapter 8: Linear programming models . . . . . . . . . . . . . 363
Chapter 9: The simplex method . . . . . . . . . . . . . . . . . 365
Chapter 10: LP duality and sensitivity analysis . . . . . . . . . 366
Chapter 11: Unconstrained optimization . . . . . . . . . . . . . 368
Chapter 12: Optimization over convex sets . . . . . . . . . . . 370
Chapter 13: Constrained optimization . . . . . . . . . . . . . . 371
References 373
Index 385
附件列表
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-12-27 22:47:56
Thanks a lot!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2018-3-15 10:50:31
Thanks a lot!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群