全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 Stata专版
8704 8
2006-01-11
<P>有没有人懂STATA中的Stochastic Frontier Regression 中估计的technical inefficiency是什么含义?是回归方程中的残差还是the ratio of actual number and potential number? </P>
<P>或者谁有stata的manual,小弟谢过先!</P>[em08][em08]
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2006-4-14 05:49:00

Stata help for xtfrontier

help xtfrontier dialog: xtfrontier also see: xtfrontier postestimation -------------------------------------------------------------------------------

Title

[XT] xtfrontier -- Stochastic frontier models for panel data

Syntax

Time-invariant model

xtfrontier depvar [indepvars] [if] [in] [weight] , ti [ti_options]

Time-varying decay model

xtfrontier depvar [indepvars] [if] [in] [weight] , tvd [tvd_options]

ti_options description ------------------------------------------------------------------------- Model i(varname_i) use varname_i as the panel ID variable noconstant suppress constant term ti use time-invariant model; the default cost fit cost frontier model constraints(constraints) apply specified linear constraints

SE vce(vcetype) vcetype may be bootstrap or jackknife

Reporting level(#) set confidence level; default is level(95)

Max options ml_maximize_options control the maximization process; seldom used -------------------------------------------------------------------------

tvd_options description ------------------------------------------------------------------------- Model i(varname_i) use varname_i as the panel ID variable t(varname_t) use varname_t as the time variable noconstant suppress constant term tvd use time-varying decay model cost fit cost frontier model constraints(constraints) apply specified linear constraints

SE vce(vcetype) vcetype may be bootstrap or jackknife

Reporting level(#) set confidence level; default is level(95)

Max options ml_maximize_options control the maximization process; seldom used -------------------------------------------------------------------------

You must tsset your data before using xtfrontier; see tsset. depvars and indepvars may contain time-series operators; see tsvarlist. fweights and i weights are allowed; see weight. bootstrap, by, jackknife, statsby, and xi may be used with xtfrontier; see prefix. See xtfrontier postestimation for features available after estimation.

Description

xtfrontier fits stochastic production or cost frontier models for panel data. More precisely, xtfrontier estimates the parameters of a linear model with a disturbance generated by specific mixture distributions.

The disturbance term in a stochastic frontier model is assumed to have two components. One component is assumed to have a strictly non-negative distribution, and the other component is assumed to have a symmetric distribution. In the econometrics literature, the non-negative component is often referred to as the inefficiency term, and the component with the symmetric distribution as the idiosyncratic error. xtfrontier permits two different parameterizations of the inefficiency term: a time-invariant model and the Battese-Coelli parameterization of time-effects. In the time-invariant model, the inefficiency term assumed to have a truncated-normal distribution. In the Battese-Coelli parameterization of time effects, the inefficiency term is modeled as a truncated-normal random variable multiplied by a specific function of time. In both models, the idiosyncratic error term is assumed to have a normal distribution. The only panel-specific effect is the random inefficiency term.

Options for time-invariant model

+-------+ ----+ Model +------------------------------------------------------------

i(varname_i); see estimation options.

ti specifies that the parameters of the time-invariant technical inefficiency model be estimated.

noconstant; see estimation options.

cost specifies the frontier model be fitted in terms of a cost function instead of a production function. By default, xtfrontier fits a production frontier model.

constraints(constraints); see estimation options.

+----+ ----+ SE +---------------------------------------------------------------

vce(vcetype); see vce_option.

+-----------+ ----+ Reporting +--------------------------------------------------------

level(#); see estimation options.

+-------------+ ----+ Max options +------------------------------------------------------

ml_maximize_options: difficult, technique(algorithm_spec), iterate(#), [no]log, trace, gradient, showstep, hessian, shownrtolerance, tolerance(#), ltolerance(#), gtolerance(#), nrtolerance(#), nonrtolerance, from(init_specs); see ml and maximize. These options are seldom used.

Options for time-varying decay model

+-------+ ----+ Model +------------------------------------------------------------

i(varname_i), t(varname_t); see estimation options.

noconstant; see estimation options.

tvd specifies that the parameters of the time-varying decay model be estimated.

cost specifies the frontier model be fitted in terms of a cost function instead of a production function. By default, xtfrontier fits a production frontier model.

constraints(constraints); see estimation options.

+----+ ----+ SE +---------------------------------------------------------------

vce(vcetype); see vce_option.

+-----------+ ----+ Reporting +--------------------------------------------------------

level(#); see estimation options.

+-------------+ ----+ Max options +------------------------------------------------------

ml_maximize_options: difficult, technique(algorithm_spec), iterate(#), [no]log, trace, hessian, gradient, showstep, shownrtolerance, tolerance(#), ltolerance(#), gtolerance(#), nrtolerance(#), nonrtolerance, from(init_specs); see ml and maximize. These options are seldom used.

Examples

. xtfrontier lnv lnk lnl, i(id) t(t) tvd

. xtfrontier lnv lnk lnl, i(id) ti

. xtfrontier lnv lnk lnl, i(id) t(t) tvd cost

Also see

Manual: [XT] xtfrontier

Online: xtfrontier postestimation; frontier, regress, tsset, xtreg

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2007-5-9 23:46:00

是回归方程中的non-negative residual

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2007-11-22 10:02:00

SFA中的殘差是被用來估計『技術進步』的用途。但由于一般殘差會是不偏的常態分配狀態,SFA將其殘差改成以U-V的形式出現。U為效率邊界,V則為技術無效率。

就這樣了

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-11-29 00:42:16
。。。。。。。。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-1-8 16:34:27
niiiiiiiiiiiiice
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群