全部版块 我的主页
论坛 金融投资论坛 六区 金融学(理论版) 金融工程(数量金融)与金融衍生品
1864 3
2009-12-17
Mou-Hsiung Chang  Tao Pang   Moustapha  Pemy
Abstract:
We consider a finite time horizon optimal stopping problem for a
system of stochastic functional differential equations with a bounded
memory. Under some sufficiently smooth conditions, a Hamilton-Jacobi-
Bellman (HJB) variational inequality for the value function is derived
via dynamical programming principle. It is shown that the value function
is the unique viscosity solution of the HJB variational inequality.
As an application of the results obtained, a pricing problem is considered
for American options in a financial market with one riskless
bank account that grows according to a deterministic linear functional
differential equation and one stock whose price dynamics follows a nonlinear
stochastic functional differential equation. It is shown that the
option pricing can be formulated into an optimal stopping problem
considered in this paper and therefore all results obtained are applicable
under very realistic assumptions.
附件列表
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2009-12-18 08:04:38
下载瞧瞧
谢谢楼主的分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-12-18 09:00:02
谢谢!!!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-1-12 22:33:47
1# dingleshao


Thanks!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群