Theorem 6.4 If the matrix A=(aij)n×n is symmetric,then:
- All the n eigenvalues λ1, . . . , λn are real.
- Eigenvectors that corresponds to different eigenvalues are orthogonal.
- There exists an orthogonal matrix P (i.e., PT = P−1) such that

The columns v1, v2,…, vn of the matrix P=[v1v2⋯vn] are eigenvectors of unit length correspondingto the eigenvalues λ1,λ2,…,λn.
Proof
- Exercise: show this for the 2×2 matrix case.
- Omitted.
- Omitted.
Exercise Let a 2×2 symmetricmatrix A be given below.

Compute the matrix P describedin the above Theorem.
图片格式题目: