全部版块 我的主页
论坛 数据科学与人工智能 数据分析与数据科学 python论坛
4084 31
2018-10-19
th_nsIpgqOG0F7XCeQ8lL01aDy48FNmF7l3.jpg
English | October 9th, 2018 | ISBN: 1789804744 | 334 Pages | EPUB
A hands-on guide to deep learning thats filled with intuitive explanations and engaging practical examples

Key Features
Designed to iteratively develop the skills of Python users who dont have a data science background
Covers the key foundational concepts youll need to know when building deep learning systems
Full of step-by-step exercises and activities to help build the skills that you need for the real-world

Book Description
Taking an approach that uses the latest developments in the Python ecosystem, youll first be guided through the Jupyter ecosystem, key visualization libraries and powerful data sanitization techniques before we train our first predictive model. Well explore a variety of approaches to classification like support vector networks, random decision forests and k-nearest neighbours to build out your understanding before we move into more complex territory. Its okay if these terms seem overwhelming; well show you how to put them to work.

Well build                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      upon our classification coverage by taking a quick look at ethical web scraping and interactive visualizations to help you professionally gather and present your analysis. Its after this that we start building out our keystone deep learning application, one that aims to predict the future price of Bitcoin based on historical public data.

By guiding you through a trained neural network, well explore common deep learning network architectures (convolutional, recurrent, generative adversarial) and branch out into deep reinforcement learning before we dive into model optimization and evaluation. Well do all of this whilst working on a production-ready web application that combines Tensorflow and Keras to produce a meaningful user-friendly result, leaving you with all the skills you need to tackle and develop your own real-world deep learning projects confidently and effectively.

What you will learn
Discover how you can assemble and clean your very own datasets
Develop a tailored machine learning classification strategy
Build, train and enhance your own models to solve unique problems
Work with production-ready frameworks like Tensorflow and Keras
Explain how neural networks operate in clear and simple terms
Understand how to deploy your predictions to the web

Who this book is for
If you're a Python programmer stepping into the world of data science, this is the ideal way to get started.

本帖隐藏的内容




二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2018-10-19 15:19:28
Applied Deep Learning with Python
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2018-10-19 15:39:33
好书,学习了
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2018-10-19 19:37:33
感谢分享。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2018-10-19 22:28:19
igs816 发表于 2018-10-19 14:17
English | October 9th, 2018 | ISBN: 1789804744 | 334 Pages | EPUB
A hands-on guide to deep learni ...
支持一下
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2018-10-19 23:19:41
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群