全部版块 我的主页
论坛 金融投资论坛 六区 金融学(理论版) 量化投资
1374 2
2018-11-15

本次与大家分享Thomas G.Dietterich的鲁棒机器学习教程讲义。


目录如下:


  • 第1讲:校准概率。本节课讨论如何从监督分类器获得校准概率。这对于做出拒绝决定很有用,对于cost-sensitive的分类,处理类不平衡以及作为更大的AI系统的组件也是有用的。

  • 第2讲:带有拒绝选项的分类。为了正确地做出拒绝决策,我们不需要获得经过校准的概率。这节课讨论了设置拒绝阈值的方法,该阈值提供了准确性保证。这包括标准的阈值法和保角预测法。

  • 第3讲:开放类别检测。前两讲仅考虑了具有iid训练数据的封闭世界的情况。在本节课中,我们讨论了检测属于不存在于训练数据中的类的测试查询的问题。

  • 第4讲:异常检测。大多数开放类别方法都使用异常检测方法来进行新奇类查询。本节课讨论了八种异常检测算法的基准研究。然后介绍由Alan Fern,Md.Amran Siddiqui开发的罕见模式异常检测理论,该理论给出了异常检测方法的PAC式理论。




微信图片_20181115102814.jpg

Robust Artificial Intelligence-lecture.zip
大小:(4.67 MB)

只需: 5 个论坛币  马上下载

本附件包括:

  • Robust Artificial Intelligence-lecture-1.pdf
  • Robust Artificial Intelligence-lecture-2.pdf
  • Robust Artificial Intelligence-lecture-3.pdf
  • Robust Artificial Intelligence-lecture-4.pdf



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2018-11-15 10:34:46
谢谢分享!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2018-11-15 22:35:12
谢谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群