全部版块 我的主页
论坛 数据科学与人工智能 数据分析与数据科学 python论坛
5935 28
2018-11-23
Credit-Risk Modelling  2018Theoretical Foundations, Diagnostic Tools, Practical Examples, and Numerical Recipes in Python
  • David Jamieson Bolder   
  • IntroductionThe risk of counterparty default in banking, insurance, institutional, and pension-fund portfolios is an area of ongoing and increasing importance for finance practitioners. It is, unfortunately, a topic with a high degree of technical complexity. Addressing this challenge, this book provides a comprehensive and attainable mathematical and statistical discussion of a broad range of existing default-risk models. Model description and derivation, however, is only part of the story. Through use of exhaustive practical examples and extensive code illustrations in the Python programming language, this work also explicitly shows the reader how these models are implemented. Bringing these complex approaches to life by combining the technical details with actual real-life Python code reduces the burden of model complexity and enhances accessibility to this decidedly specialized field of study. The entire work is also liberally supplemented with model-diagnostic, calibration, and parameter-estimation techniques to assist the quantitative analyst in day-to-day implementation as well as in mitigating model risk. Written by an active and experienced practitioner, it is an invaluable learning resource and reference text for financial-risk practitioners and an excellent source for advanced undergraduate and graduate students seeking to acquire knowledge of the key elements of this discipline.    TOC

    1.       A Natural FirstStep


    David Jamieson Bolder

    Pages 41-83


    2.      Mixture orActuarial Models


    David Jamieson Bolder

    Pages 85-148


    3.      Threshold Models


    David Jamieson Bolder

    Pages 149-227


    4.      The Genesis ofCredit-Risk Modelling


    David Jamieson Bolder

    Pages 229-283


    2.    Part II


    1.   Front Matter

    Pages 285-286

    2.      A RegulatoryPerspective


    David Jamieson Bolder

    Pages 287-349


    3.      Risk Attribution


    David Jamieson Bolder

    Pages 351-427


    4.      Monte CarloMethods


    David Jamieson Bolder

    Pages 429-487


    3.    Part III


    1.   Front Matter

    Pages 489-489

    2.      DefaultProbabilities


    David Jamieson Bolder

    Pages 491-573


    3.      Default andAsset Correlation


    David Jamieson Bolder

    Pages 575-635














附件列表

Credit-Risk Modelling.pdf

大小:11.6 MB

只需: 10 个论坛币  马上下载

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2018-11-23 20:28:01
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2018-11-23 22:36:41
是本好书,里边用python实现,最重要的是理论推导非常细致。值得一读。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2018-11-23 22:43:43
20115326 发表于 2018-11-23 22:36
是本好书,里边用python实现,最重要的是理论推导非常细致。值得一读。
thanks for your comments!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2018-12-13 20:40:46
难得的好书,理论与实践结合的很好。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2018-12-13 20:50:50
tianjuhao 发表于 2018-12-13 20:40
难得的好书,理论与实践结合的很好。
glad to know it is helpful to you!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群