全部版块 我的主页
论坛 经济学论坛 三区 微观经济学 经济金融数学专区
2677 13
2019-01-09
Fundamentals of Wavelets: Theory, Algorithms, and Applications, 2nd Edition

                         

Jaideva C. Goswami,Andrew K. Chan

ISBN: 978-0-470-48413-5                January 2011  359 Pages

Description                    Most existing books on wavelets are either too mathematical or they focus on too narrow a specialty. This book provides a thorough treatment of the subject from an engineering point of view. It is a one-stop source of theory, algorithms, applications, and computer codes related to wavelets. This second edition has been updated by the addition of:   





  • a section on "Other Wavelets" that describes curvelets, ridgelets, lifting wavelets, etc
  • a section on lifting algorithms
  • Sections on Edge Detection and Geophysical Applications
  • Section on Multiresolution Time Domain Method (MRTD) and on Inverse problems     

About the Author

      

Jaideva C. Goswami, PhD, is an Engineering Advisor at  Schlumberger in Sugarland, Texas.


He is also a former professor of  Electronics and Communication Engineering at the


Indian Institute  of Technology, Kharagpur. Dr. Goswami has taught several short  courses


on wavelets and contributed to the Wiley Encyclopedia of  Electrical and Electronics


Engineering as well as Wiley  Encyclopedia of RF and Microwave Engineering. He has


many research  papers and patents to his credit, and is a Fellow of IEEE.


      

Andrew K. Chan, PhD, is on the faculty of Texas A&M  University and is the coauthor of Wavelets in a Box and Wavelet  Toolware. He is a Life Fellow of IEEE.

      


New to this  edition


a section on "Other Wavelets" that describes curvelets, ridgelets, lifting wavelets, etc


This second edition has been updated by the addition of:  




  

a section on lifting algorithms

  

Sections on Edge Detection and Geophysical Applications

  

Section on Multiresolution Time Domain Method (MRTD) and on Inverse problems


Contents

1.What is this book all about?   

2. Mathematical Preliminary.


2.1 Linear Spaces.


2.2 Vectors and Vector Spaces.


2.3 Basis Functions, Orthogonality and Biothogonality.


2.4 Local Basis and Riesz Basis.


2.5 Discrete Linear Normed Space.


2.6 Approximation by Orthogonal Projection.


2.7 Matrix Algebra and Linear Transformation.


2.8 Digital Signals.


2.9 Exercises.


2.10 References.


3. Fourier Analysis.


3.1 Fourier Series.


3.2 Rectified Sine Wave.


3.3 Fourier Transform.


3.4 Properties of Fourier Transform.


3.5 Examples of Fourier Transform.


3.6 Poisson’s Sum and Partition of ZUnity.


3.7 Sampling Theorem.


3.8 Partial Sum and Gibb’s Phenomenon.


3.9 Fourier Analysis of Discrete-Time Signals.


3.10 Discrete Fourier Transform (DFT).


3.11 Exercise.


3.12 References.


4. Time-Frequency Analysis.


4.1 Window Function.


4.2 Short-Time Fourier Transform.


4.3 Discrete Short-Time Fourier Transform.


4.4 Discrete Gabor Representation.


4.5 Continuous Wavelet Transform.


4.6 Discrete Wavelet Transform.


4.7 Wavelet Series.


4.8 Interpretations of the Time-Frequency Plot.


4.9 Wigner-Ville Distribution.


4.10 Properties of Wigner-Ville Distribution.


4.11 Quadratic Superposition Principle.


4.12 Ambiguity Function.


4.13 Exercise.


4.14 Computer Programs.


4.15 References.


5. Multiresolution Anaylsis.


5.1 Multiresolution Spaces.


5.2 Orthogonal, Biothogonal, and Semiorthogonal  Decomposition.


5.3 Two-Scale Relations.


5.4 Decomposition Relation.


5.5 Spline Functions and Properties.


5.6 Mapping a Function into MRA Space.


5.7 Exercise.


5.8 Computer Programs.


5.9 References.


6. Construction of Wavelets.


6.1 Necessary Ingredients for Wavelet Construction.


6.2 Construction of Semiorthogonal Spline Wavelets.


6.3 Construction of Orthonormal Wavelets.


6.4 Orthonormal Scaling Functions.


6.5 Construction of Biothogonal Wavelets.


6.6 Graphical Display of Wavelet.


6.7 Exercise.


6.8 Computer Programs.


6.9 References.


7. DWT and Filter Bank Algorithms.


7.1 Decimation and Interpolation.


7.2 Signal Representation in the Approximation Subspace.


7.3 Wavelet Decomposition Algorithm.


7.4 Reconstruction Algorithm.


7.5 Change of Bases.


7.6 Signal Reconstruction in Semiorthogonal Subspaces.


7.7 Examples.


7.8 Two-Channel Perfect Reconstruction Filter Bank.


7.9 Polyphase Representation for Filter Banks.


7.10 Comments on DWT and PR Filter Banks.


7.11 Exercise.


7.12 Computer Program.


7.13 References.


8. Special Topics in Wavelets and Algorithms.


8.1 Fast Integral Wavelet Transform.


8.2 Ridgelet Transform.


8.3 Curvelet Transform.


8.4 Complex Wavelets.


8.5 Lifting Wavelet transform.


8.6 References.


9. Digital Signal Processing Applications.


9.1 Wavelet Packet.


9.2 Wavelet-Packet Algorithms.


9.3 Thresholding.


9.4 Interference Suppression.


9.5 Faulty Bearing Signature Identification.


9.6 Two-Dimensional Wavelets and Wavelet Packets.


9.7 Edge Detection.


9.8 Image Compression.


9.9 Microcalcification Cluster Detection.














                           





附件列表

fundamental of wavelets theory algorithms and applications.pdf

大小:21.1 MB

只需: 3 个论坛币  马上下载

Fundamental of wavelets theory algorithms and applications

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2019-1-9 12:17:40
抱歉,发的贴子排版不太好, 文档推荐
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2019-1-9 19:22:54
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2019-1-9 21:07:46
牛 牛 牛
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2019-1-10 08:13:28
thanks
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2019-1-10 09:12:23
感谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群