qiangli 发表于 2019-2-2 21:03 
两次回归为什么样本书数不同呀
这是全部回归结果,是不是因为红字部分?
logit y i.x1 x2 i.x3 i.x4 x5 i.x6 i.x7 i.x8 x9 x10 x11 x12 x13 x14 i.x15 i.x16 x17
note: 2.x6 omitted because of collinearity
Iteration 0: log likelihood = -58246.158
Iteration 1: log likelihood = -51854.418
Iteration 2: log likelihood = -48136.113
Iteration 3: log likelihood = -47443.402
Iteration 4: log likelihood = -47438.06
Iteration 5: log likelihood = -47438.052
Iteration 6: log likelihood = -47438.052
Logistic regression Number of obs = 200,859
LR chi2(35) = 21616.21
Prob > chi2 = 0.0000
Log likelihood = -47438.052 Pseudo R2 = 0.1856
------------------------------------------------------------------------------
y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
x1 |
1 | .4718149 .0346343 13.62 0.000 .403933 .5396968
2 | .6283272 .0330494 19.01 0.000 .5635515 .6931029
3 | .9322624 .1154956 8.07 0.000 .7058952 1.15863
|
x2 | -.4192662 .0411938 -10.18 0.000 -.5000046 -.3385278
|
x3 |
1 | -.1836634 .1375043 -1.34 0.182 -.4531668 .0858401
2 | .4551412 .1413565 3.22 0.001 .1780876 .7321948
|
x4 |
1 | .2339434 .0328446 7.12 0.000 .1695691 .2983176
2 | .4293368 .0322197 13.33 0.000 .3661874 .4924862
3 | .9393396 .0922715 10.18 0.000 .7584909 1.120188
|
x5 | -.4211011 .0631085 -6.67 0.000 -.5447916 -.2974106
|
x6 |
1 | -1.473278 .3902056 -3.78 0.000 -2.238067 -.7084888
2 | 0 (omitted)
|
x7 |
1 | .2980828 .0205875 14.48 0.000 .257732 .3384337
2 | .5295108 .0780472 6.78 0.000 .376541 .6824805
|
x8 |
1 | .3001549 .0372043 8.07 0.000 .2272358 .373074
2 | .2297675 .0486957 4.72 0.000 .1343257 .3252093
|
x9 | .0619416 .0368217 1.68 0.093 -.0102276 .1341108
x10 | .25363 .0226662 11.19 0.000 .209205 .298055
x11 | -.0288401 .0022284 -12.94 0.000 -.0332076 -.0244726
x12 | -.1048126 .0026307 -39.84 0.000 -.1099687 -.0996564
x13 | .0474831 .002024 23.46 0.000 .0435162 .05145
x14 | .2520445 .0057665 43.71 0.000 .2407424 .2633466
|
x15 |
1 | .0408918 .1909203 0.21 0.830 -.3333051 .4150888
2 | -.0732107 .0398217 -1.84 0.066 -.1512599 .0048385
3 | -.4233089 .0309316 -13.69 0.000 -.4839336 -.3626841
4 | .1814394 .105979 1.71 0.087 -.0262757 .3891545
5 | .0617881 .0261066 2.37 0.018 .0106202 .112956
6 | .8798058 .1976234 4.45 0.000 .492471 1.267141
|
x16 |
1 | 1.271473 .0333676 38.11 0.000 1.206073 1.336872
2 | .2234383 .0453185 4.93 0.000 .1346157 .3122609
3 | 1.413815 .0427671 33.06 0.000 1.329993 1.497637
4 | .5885057 .043544 13.52 0.000 .5031609 .6738504
5 | .1490257 .0511969 2.91 0.004 .0486817 .2493698
6 | .6556352 .0683463 9.59 0.000 .5216789 .7895915
7 | 1.253672 .0666869 18.80 0.000 1.122968 1.384375
|
x17 | .3754281 .0178103 21.08 0.000 .3405205 .4103357
_cons | -5.407737 .1798913 -30.06 0.000 -5.760317 -5.055157
------------------------------------------------------------------------------