$\Leftarrow $
如果$f(0)=0$,因为$f(x)\in C[0,1]$,所以有$$\lim_{x\rightarrow 0}f(x)=f(0)=0.$$
因此,$\frac{x}{x^2+t^2}f(t)$在$x=0$处连续,从而在$[0,1]$上一致连续。由此,$g(x)$取极限时,极限与积分可交换,即有:$$\lim_{x\to 0}g(x)=\lim_{x\to 0}\int_{0}^{1}\frac{x}{x^2+t^2}f(t)dt=\int_{0}^{1}\lim_{x\to 0}\frac{x}{x^2+t^2}f(t)dt=0=g(0).$$
$$\therefore g(x)\in C[0,1].$$
$\Rightarrow $
如果$g(x)\in C[0,1]$,$g(x)$在$[0,1]$上一致连续。即有:$$|g(x)-g(0)|=|\int_{0}^{1}\frac{x}{x^2+t^2}f(t)dt-0|< \varepsilon .(\varepsilon > 0)$$
$$\because |\int_{0}^{1}\frac{x}{x^2+t^2}f(t)dt|=|\int_{0}^{1}\frac{x^2}{x^2+t^2}\frac{f(t)}{x}dt|\geq |\int_{0}^{1}\frac{f(t)}{x}dt|\geq 0.$$ $$\therefore \int_{0}^{1}\frac{f(t)}{x}dt=0.$$
因为$x=0$为积分奇点,若$f(t)\neq o(x)$,则积分发散,与条件矛盾。所以有$$f(0)=0.$$