全部版块 我的主页
论坛 经济学论坛 三区 博弈论
7060 34
2010-01-22
悬赏 100 个论坛币 已解决
关于博弈的问题:
    有甲乙丙三人,生产同一种产品,
                                             甲单独生产效率为10,乙单独生产效率为12,丙单独生产效率为15
                                             甲乙合作生产效率为23,乙丙合作生产效率为28,  甲丙合作生产效率为29
                                             甲乙丙三人共同生产效率为45


       不管是单干、两人合作还是三人合作,甲乙丙三人各自要求刚好得到10单位该产品,不管是独自工作还是在合作生产中,任何一人如果按一定的产品分配比例得到自己的10单位产品后,马上退出生产。
      
        问合作时如何确定分配比例 ,才能让三人各自得到10单位产品所用的总生产时间最少?

   

         如果谁用字母把上面数字替换,得出表达式答案,提供论坛币800

最佳答案

wellwell24 查看完整内容

设:将具体的数字表示为甲乙丙三人合作博弈的特征函数:v(1),v(2),v(3),v(12),v(13),v(23),v(123).——v(ij)表示i,j两人合作的单位生产数量。显然这个博弈是超可加的。现在每个人均想得到a个单位,问如何合作,如何分配合作所得使得总生产时间最短。 (1):如果核心非空,即0.5[v(12)+v(13)+v(23)]>=v(123) i:如果(v(123)/3,v(123)/3,v(123)/3)在核心内最好了,就是前一个帖子说的,1:1:1的比例生产3a个单位,然后平分; ...
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2010-1-22 14:53:10
设:将具体的数字表示为甲乙丙三人合作博弈的特征函数:v(1),v(2),v(3),v(12),v(13),v(23),v(123).——v(ij)表示i,j两人合作的单位生产数量。显然这个博弈是超可加的。现在每个人均想得到a个单位,问如何合作,如何分配合作所得使得总生产时间最短。
(1):如果核心非空,即0.5[v(12)+v(13)+v(23)]>=v(123)
i:如果(v(123)/3,v(123)/3,v(123)/3)在核心内最好了,就是前一个帖子说的,1:1:1的比例生产3a个单位,然后平分;
ii:如果(v(123)/3,v(123)/3,v(123)/3)不在核心内,在核心内选择使得min[x,y,z]/max[x,y,z]最大的分配(x0, y0, z0)我们不妨设z0最大
三人合作生产a*(x0+y0+z0)/z0个,按比例(x0, y0, z0)分配,此时丙得到a个,退出。甲得到a*x0/z0,乙得到a*y0/z0
此时甲还需要a-a*x0/z0,记为b;乙还需要a-a*y0/z0,记为c 注意到2人合作博弈的核心总是非空的,如果(v(12)b/(b+c), v(12)c/(b+c))在核心中,最好了。甲乙合作生产b+c个,按照比例b:c分配,结束;如果(v(12)b/(b+c), v(12)c/(b+c))不在核心中,在核心中选择最接近比例b:c的分配——对于2人博弈,只需要考查
(v(1), v(12)-v(1))与(v(12)-v(2), v(2))这两个分配就可以了。不妨设是v(1): v(12)-v(1)=b':c与b:c比较接近。二人合作生产b'+c个(若b'<b)或b(b'+c)/b'个(若b'>b),按照比例b':c分配。此时甲(b'>b)或乙(b'<b)满足,剩余一人独自生产不足部分。
(2):如果博弈没有核心。我们考虑两两合作的情形。用文字描述太困难。解释一下变了直接上方程。ti——i单干时间;tij——ij合作时间。因为核心空,所以无法实现三人合作。单干时无所谓比例,我们设x,y,z分别为在联盟12,13,23中第一个人分配的比例,对应的,第二个人的分配比例为1-x,1-y,1-z.我们有如下线性规划
min u=t1+t2+t3+t12+t13+t23
约束于
t1*v(1)+x*t12*v(12)+y*t13*v(13)=a
t2*v(2)+(1-x)*t12*v(12)+z*t23*v(23)=a
t3*v(3)+(1-y)*t13*v(13)+(1-z)*t23*v(23)=a
(x*v(12), (1-x)v(12))属于2人博弈的核心,即在(v(1), v(12)-v(1))与(v(12)-v(2), v(2))之间
(y*v(13), (1-y)v(13))同上
(z*v(23), (1-z)v(23))同上
所有变量>=0
完毕。
附注:其实聪明的你也可以想一想,即便3人博弈核心不空,也可以用第二种方法做。需要加一个约束条件;前三个约束条件也要增加一项。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-1-22 15:00:37
自己顶一个
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-1-22 17:28:06
[dizzy][dizzy]
看样子论坛币送不出去了
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-1-22 20:40:53
总有人做的出来吧
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-1-23 00:15:59
博弈,既熟悉又陌生的词.初学者飘过~~~等答案。。。哈哈
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群