Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log likelihood = -61740.068
Iteration 1: log likelihood = -61712.603
Iteration 2: log likelihood = -61711.857
Iteration 3: log likelihood = -61711.856
Computing standard errors:
Mixed-effects ML regression Number of obs = 109,590
Group variable: code2 Number of groups = 703
Obs per group:
min = 24
avg = 155.9
max = 2,852
Wald chi2(66) = 10543.24
Log likelihood = -61711.856 Prob > chi2 = 0.0000
------------------------------------------------------------------------------
ine | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
mmw | .0684927 .0253297 2.70 0.007 .0188475 .118138
gender | -.008327 .0027271 -3.05 0.002 -.013672 -.002982
|
Hjd |
天津 | .0084668 .0548786 0.15 0.877 -.0990933 .1160268
河北 | .0188265 .0472165 0.40 0.690 -.0737161 .111369
山西 | .0036232 .0480007 0.08 0.940 -.0904565 .0977028
内蒙古 | -.0266191 .0480205 -0.55 0.579 -.1207375 .0674993
辽宁 | -.0002296 .048169 -0.00 0.996 -.094639 .0941798
吉林 | -.0353641 .048164 -0.73 0.463 -.1297639 .0590357
黑龙江 | -.0430188 .0476 -0.90 0.366 -.1363131 .0502755
上海 | .0313351 .0645634 0.49 0.627 -.0952069 .157877
江苏 | .0142282 .0472009 0.30 0.763 -.0782838 .1067403
浙江 | .004899 .0479371 0.10 0.919 -.0890561 .098854
安徽 | -.0249641 .0470194 -0.53 0.595 -.1171205 .0671922
福建 | .0034491 .0476772 0.07 0.942 -.0899965 .0968947
江西 | -.0332376 .0472418 -0.70 0.482 -.1258298 .0593546
山东 | .0151626 .0472306 0.32 0.748 -.0774076 .1077329
河南 | -.0015092 .0470244 -0.03 0.974 -.0936753 .0906568
湖北 | -.0246465 .0472122 -0.52 0.602 -.1171807 .0678877
湖南 | -.0080177 .0472748 -0.17 0.865 -.1006746 .0846392
广东 | -.0084127 .0475211 -0.18 0.859 -.1015523 .084727
广西 | -.0208227 .0476644 -0.44 0.662 -.1142432 .0725978
海南 | -.0015838 .0489851 -0.03 0.974 -.0975928 .0944253
重庆 | -.0207353 .0474242 -0.44 0.662 -.1136849 .0722143
四川 | -.0326488 .0470433 -0.69 0.488 -.1248519 .0595543
贵州 | -.0750757 .047433 -1.58 0.113 -.1680427 .0178914
云南 | -.0232891 .0481245 -0.48 0.628 -.1176113 .0710331
陕西 | .0177473 .0477055 0.37 0.710 -.0757538 .1112485
甘肃 | -.0097845 .0479119 -0.20 0.838 -.10369 .0841211
青海 | -.0796821 .0546957 -1.46 0.145 -.1868837 .0275194
宁夏 | .0251755 .0501936 0.50 0.616 -.0732022 .1235532
|
minzu | -.0059514 .0059786 -1.00 0.320 -.0176693 .0057665
|
Edu |
小学 | .027968 .0135191 2.07 0.039 .001471 .054465
初中 | .116064 .0132093 8.79 0.000 .0901742 .1419537
高中 | .2169951 .013516 16.05 0.000 .1905041 .243486
中专 | .3019154 .0139014 21.72 0.000 .2746692 .3291617
大学专科 | .3402454 .0141776 24.00 0.000 .3124577 .3680331
大学本科 | .3735814 .0161868 23.08 0.000 .3418559 .4053068
研究生 | .3758342 .0367153 10.24 0.000 .3038735 .4477948
|
hukou | .0463394 .0038814 11.94 0.000 .0387321 .0539467
fmsz | -.016473 .0014645 -11.25 0.000 -.0193434 -.0136025
|
year |
2016 | .0170205 .0161736 1.05 0.293 -.0146792 .0487203
|
age | -.000018 .0001842 -0.10 0.922 -.0003792 .0003431
ldtime | .0018227 .0003168 5.75 0.000 .0012018 .0024436
Marry | .0412719 .0038372 10.76 0.000 .0337512 .0487927
|
_cons | .4740246 .0557349 8.50 0.000 .3647862 .583263
------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
code2: Independent |
sd(人均G~元) | 4.28e-08 . . .
sd(第二~比) | .0036812 . . .
sd(第三~比) | .0030445 . . .
sd(人均~里) | .110739 . . .
sd(人均~资) | 4.35e-08 . . .
sd(_cons) | 2.40e-07 . . .
-----------------------------+------------------------------------------------
sd(Residual) | .4195853 . . .
------------------------------------------------------------------------------
LR test vs. linear model: chi2(6) = 6968.22 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
Conditional intraclass correlation
------------------------------------------------------------------------------
Level | ICC Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
code2 | 3.26e-13 0 3.26e-13 3.26e-13
------------------------------------------------------------------------------
1.层二结果怎么解释?
2.结果适合用多层次模型吗?