全部版块 我的主页
论坛 经济学论坛 三区 微观经济学 经济金融数学专区
1701 1
2019-04-05

大多数工程和科学问题都是多目标优化问题,存在多个彼此冲突的目标,如何获取这些问题的最优解,一直都是学术界和工程界关注的焦点问题.与单目标优化问题不同,多目标优化的本质在于,大多数情况下,某目标的改善可能引起其他目标性能的降低,同时使多个目标均达到最优是不可能的,只能在各目标之间进行协调权衡和折中处理,使所有目标函数尽可能达到最优,而且问题的最优解由数量众多,甚至无穷大的Pareto最优解组成。



智能优化算法是一类通过模拟某一自然现象或过程而建立起来的优化方法’这类算法包括进化算法、粒子群算法、禁忌搜索、分散搜索、模拟退火、人工免疫系统和蚁群算法等。和传统的数学规划法相比,智能优化算法更适合求解多目标优化问题。首先,大多数智能优化算法能同时处理一组解,算法每运行一次,能获得多个有效解。其次,智能优化算法对Pareto最优前端的形状和连续性不敏感,能很好地逼近非凸或不连续的最优前端。目前,智能优化算法作为一类启发式搜索算法,已被成功应用于多目标优化领域,出现了一些热门的研究方向,如进化多目标优化,同时,多目标智能优化算法在电力系统、制造系统和控制系统等方面的应用研究也取得了很大的进展。



本书力图全面总结作者和国内外同行在多目标智能优化算法的理论与应用方面所取得的一系列研究成果。全书包括两部分,共8章。第一部分为第1-4主要介绍了各种多目标智能优化算法的理论。其中第1章为绪论,介绍各种智能优化算法的基本思想和原理。第2章介绍多目标进化算法,主要描述多目标进化算法的基本原理、典型算法和各种进化机制与策略,如混合策略、协同进化和动态进化策略等。第3章介绍多目标粒子群算法,包括基本原理、典型算法、混合算法和交互粒子群算法等。第4章描述除粒子群算法和进化算法之外的其他多目标智能优化算法,主要介绍多目标模拟退火算法、多目标蚁群算法、多目标免疫算法、多目标差分进化算法和多目标分散搜索等。



第二部分为第5-8章,主要介绍了多目标智能优化算法的应用’包括神经网络优化、生产调度、交通与物流系统优化、电力系统优化及其他。第5章描述人工神经网络的多目标优化,主要包括Pareto进化神经网络、径向基神经网络、递归神经网络和模糊神经网络。第6章介绍交通与物流系统优化,主要描述了智能优化算法在物流配送、城市公交路线网络和公共交通调度等方面的应用。


多目标智能优化算法及其应用.pdf
大小:(81.11 MB)

只需: 5 个论坛币  马上下载





二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2019-4-5 19:20:31
感谢分享数学资源
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群