沈阳工业大学2018年数学分析611真题
证明:由拉格朗日中值定理知:
$\exists \eta_1\in(a,c),s.t.$
$f(c)-f(a)=f'(\eta_1)(c-a),$
$\because f(a)=0,f(c)> 0,c-a> 0,$
$\therefore f'(\eta_1)> 0.$
同理,有
$\exists \eta_1\in(c,b),s.t.$
$f(b)-f(c)=f'(\eta_2)(b-c),$
$\because f(b)=0,f(c)> 0,b-c> 0,$
$\therefore f'(\eta_2)< 0.$
由于$f'(x)$二次可导,所以对$f'(x)$,再次应用拉氏中值定理:
$\exists \xi \in(\eta_1,\eta_2)\subset (a,b),s.t.$
$f'(\eta_2)-f'(\eta_1)=f''(\xi)(\eta_2-\eta_1),$
$\because f'(\eta_2)-f'(\eta_1)< 0,\eta_2-\eta_1> 0,$
$\therefore f''(\xi)< 0.$