桂林电子科技大学2017年811数学分析A
解:因为积分与路径无关,所以有:
$\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y},\rightarrow f'_y(x,y)=\cos y.$
$\therefore f(x,y)=\int_{0}^{y}f'_y(x,y)dy=\sin y+f(x,0).$
将积分路径改为:
$(0,0)\rightarrow (t,t^2)\Rightarrow O(0,0)\rightarrow A(t,0)\rightarrow B(t,t^2).$
同已知,
$\begin{align*}\int_{(0,0)}^{(t,t^2)}f(x,y)dx+x\cos ydy&=\int_{OA}f(x,y)dx+x\cos ydy+\int_{AB}f(x,y)dx+x\cos ydy\\\\&=\int_{0}^{t}f(x,0)dx+\int_{0}^{t^2}t\cos ydy\\\\&=\int_{0}^{t}f(x,0)dx+t\sin t^2\\\\&=t^2,
\end{align*}$
$\therefore \int_{0}^{t}f(x,0)dx=t^2-t\sin t^2.$
对$t$求导,得:
$f(x,0)=f(t,0)=2t-\sin t^2-2t^2\cos t^2,$
代入前面的已知等式,得:
$\therefore f(x,y)=\sin y+f(x,0)=\sin y+2t-\sin t^2-2t^2\cos t^2=2x-2y\cos y.$
其中,$x=t,y=t^2.$