全部版块 我的主页
论坛 数据科学与人工智能 数据分析与数据科学 R语言论坛
3494 5
2019-04-24
Table of Contents
  • Part 1. Prelude
    • Chapter 1. Distribution, Abundance, and Species Richness in Ecology
      • 1.1. Point Processes, Distribution, Abundance, and Species Richness
      • 1.2. Meta-population Designs
      • 1.3. State and Rate Parameters
      • 1.4. Measurement Error Models in Ecology
      • 1.5. Hierarchical Models for Distribution, Abundance, and Species Richness
      • 1.6. Summary and Outlook
      • Exercises
    • Chapter 2. What Are Hierarchical Models and How Do We Analyze Them?
      • 2.1. Introduction
      • 2.2. Random Variables, Probability Density Functions, Statistical Models, Probability, and Statistical Inference
      • 2.3. Hierarchical Models (HMs)
      • 2.4. Classical Inference Based on Likelihood
      • 2.5. Bayesian Inference
      • 2.6. Basic Markov Chain Monte Carlo (MCMC)
      • 2.7. Model Selection and Averaging
      • 2.8. Assessment of Model Fit
      • 2.9. Summary and Outlook
      • Exercises
    • Chapter 3. Linear Models, Generalized Linear Models (GLMs), and Random Effects Models: The Components of Hierarchical Models
      • 3.1. Introduction
      • 3.2. Linear Models
      • 3.3. Generalized Linear Models (GLMs)
      • 3.4. Random Effects (Mixed) Models
      • 3.5. Summary and Outlook
      • Exercises
    • Chapter 4. Introduction to Data Simulation
      • 4.1. What Do We Mean by Data Simulation, and Why Is It So Tremendously Useful?
      • 4.2. Generation of a Typical Point Count Data Set
      • 4.3. Packaging Everything in a Function
      • 4.4. Summary and Outlook
      • Exercises
    • Chapter 5. Fitting Models Using the Bayesian Modeling Software BUGS and JAGS
      • 5.1. Introduction
      • 5.2. Introduction to BUGS Software: WinBUGS, OpenBUGS, and JAGS
      • 5.3. Linear Model with Normal Response (Normal GLM): Multiple Linear Regression
      • 5.4. The R Package rjags
      • 5.5. Missing values (NAs) in a Bayesian Analysis
      • 5.6. Linear Model with Normal Response (Normal GLM): Analysis of Covariance (ANCOVA)
      • 5.7. Proportion of Variance Explained (R2)
      • 5.8. Fitting a Model with Nonstandard Likelihood Using the Zeros or the Ones Tricks
      • 5.9. Poisson GLM
      • 5.10. GoF Assessment: Posterior Predictive Checks and the Parametric Bootstrap
      • 5.11. Binomial GLM (Logistic Regression)
      • 5.12. Moment-Matching in a Binomial GLM to Accommodate Underdispersion
      • 5.13. Random-Effects Poisson GLM (Poisson GLMM)
      • 5.14. Random-Effects Binomial GLM (Binomial GLMM)
      • 5.15. General Strategy of Model Building with BUGS
      • 5.16. Summary and Outlook
      • Exercises

  • Part 2. Models for Static Systems
    • Chapter 6. Modeling Abundance with Counts of Unmarked Individuals in Closed Populations: Binomial N-mixture Models
      • 6.1. Introduction to the Modeling of Abundance
      • 6.2. An Exercise in Hierarchical Modeling: Derivation of Binomial N-mixture Models from First Principles
      • 6.3. Simulation and Analysis of the Simplest Possible N-mixture Model
      • 6.4. A Slightly More Complex N-mixture Model with Covariates
      • 6.5. A Very General Data Simulation Function for N-mixture Models: simNmix
      • 6.6. Study Design, Bias, and Precision of the Binomial N-mixture Model Estimator
      • 6.7. Study of Some Assumption Violations Using Function simNmix
      • 6.8. Goodness-of-Fit (GoF)
      • 6.9. Abundance Mapping of Swiss Great Tits with unmarked
      • 6.10. The Issue of Space, or: What Is Your Effective Sample Area?
      • 6.11. Bayesian Modeling of Swiss Great Tits with BUGS
      • 6.12. Time-for-Space Substitution
      • 6.13. The Royle-Nichols Model and Other Nonstandard N-mixture Models
      • 6.14. Multiscale N-mixture Models
      • 6.15. Summary and Outlook
      • Exercises
    • Chapter 7. Modeling Abundance Using Multinomial N-Mixture Models
      • 7.1. Introduction
      • 7.2. Multinomial N-Mixture Models in Ecology
      • 7.3. Simulating Multinomial Observations in R
      • 7.4. Likelihood Inference for Multinomial N-Mixture Models
      • 7.5. Example 1: Bird Point Counts Based on Removal Sampling
      • 7.6. Bayesian Analysis in BUGS Using the Conditional Multinomial (Three-Part) Model
      • 7.7. Building Custom Multinomial Models in unmarked
      • 7.8. Spatially Stratified Capture-Recapture Models
      • 7.9. Example 3: Jays in the Swiss MHB
      • 7.10. Summary and Outlook
      • Exercises
    • Chapter 8. Modeling Abundance Using Hierarchical Distance Sampling
      • 8.1. Introduction
      • 8.2. Conventional Distance Sampling
      • 8.3. Bayesian Conventional Distance Sampling
      • 8.4. Hierarchical Distance Sampling (HDS)
      • 8.5. Bayesian HDS
      • 8.6. Summary
      • Exercises
    • Chapter 9. Advanced Hierarchical Distance Sampling
      • 9.1. Introduction
      • 9.2. Distance Sampling (DS) with Clusters, Groups, or Other Individual Covariates
      • 9.3. Time-Removal and DS Combined
      • 9.4. Mark-Recapture/Double-Observer DS
      • 9.5. Open HDS Models: Temporary Emigration
      • 9.6. Open HDS Models: Implicit Dynamics
      • 9.7. Open HDS Models: Modeling Population Dynamics
      • 9.8. Spatial Distance Sampling: Modeling Within-Unit Variation in Density
      • 9.9. Summary
      • Exercises
    • Chapter 10. Modeling Static Occurrence and Species Distributions Using Site-occupancy Models
      • 10.1. Introduction to the Modeling of Occurrence—Including Species Distributions
      • 10.2. Another Exercise in Hierarchical Modeling: Derivation of the Site-Occupancy Model
      • 10.3. Simulation and Analysis of the Simplest Possible Site-Occupancy Model
      • 10.4. A Slightly More Complex Site-Occupancy Model with Covariates
      • 10.5. A General Data Simulation Function for Static Occupancy Models: simOcc
      • 10.6. A Model with Lots of Covariates: Use of R Function model.matrix with BUGS
      • 10.7. Study Design, and Bias and Precision of Site-Occupancy Estimators
      • 10.8. Goodness-of-Fit
      • 10.9. Distribution Modeling and Mapping of Swiss Red Squirrels
      • 10.10. Multiscale Occupancy Models
      • 10.11. Space-for-Time Substitution
      • 10.12. Models for Data along Transects: Poisson, Exponential, Weibull, and Removal Observation Models
      • 10.13. Occupancy Modeling of a Community of Species
      • 10.14. Modeling Wiggly Covariate Relationships: Penalized Splines in Hierarchical Models
      • 10.15. Summary and Outlook
      • Exercises
    • Chapter 11. Hierarchical Models for Communities
      • 11.1. Introduction
      • 11.2. Simulation of a Metacommunity
      • 11.3. Metacommunity Data from the Swiss Breeding Bird Survey MHB
      • 11.4. Overview of Some Models for Metacommunities
      • 11.5. Community Models That Ignore Species Identity
      • 11.6. Community Models that Fully Retain Species Identity
      • 11.7. The Dorazio/Royle (DR) Community Occupancy Model with Data Augmentation (DA)
      • 11.8. Inferences Based on the Estimated Z Matrix: Similarity among Sites and Species
      • 11.9. Species Richness Maps and Species Accumulation Curves
      • 11.10. Community N-mixture (or Dorazio/Royle/Yamaura - DRY) Models
      • 11.11. Summary and Outlook
      • Exercises

  • Summary and Conclusion
  • References
  • Author Index
  • Subject Index


附件列表
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2019-4-24 08:27:43
谢谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2019-4-25 05:24:37
真是好书,多谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2019-6-7 04:42:11
谢谢分享!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2022-4-22 15:05:47

谢谢分享!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2022-4-25 15:39:01
有卷2吗,谢谢
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群