全部版块 我的主页
论坛 数据科学与人工智能 数据分析与数据科学 python论坛
1832 7
2019-05-23
Table of Contents
Preface 1
Chapter 1: Getting Started with Python Libraries 9
Software used in this book 10
Installing software and setup 10
On Windows 10
On Linux 12
On Mac OS X 13
Building NumPy SciPy, matplotlib, and IPython from source 14
Installing with setuptools 15
NumPy arrays 16
A simple application 16
Using IPython as a shell 19
Reading manual pages 22
IPython notebooks 22
Where to find help and references 23
Summary 23
Chapter 2: NumPy Arrays 25
The NumPy array object 25
The advantages of NumPy arrays 26
Creating a multidimensional array 27
Selecting NumPy array elements 27
NumPy numerical types 28
Data type objects 30
Character codes 30
The dtype constructors 31
The dtype attributes 31

One-dimensional slicing and indexing 32
Manipulating array shapes 32
Stacking arrays 35
Splitting NumPy arrays 39
NumPy array attributes 41
Converting arrays 48
Creating array views and copies 48
Fancy indexing 50
Indexing with a list of locations 52
Indexing NumPy arrays with Booleans 53
Broadcasting NumPy arrays 55
Summary 58
Chapter 3: Statistics and Linear Algebra 59
NumPy and SciPy modules 59
Basic descriptive statistics with NumPy 63
Linear algebra with NumPy 66
Inverting matrices with NumPy 66
Solving linear systems with NumPy 68
Finding eigenvalues and eigenvectors with NumPy 69
NumPy random numbers 71
Gambling with the binomial distribution 72
Sampling the normal distribution 74
Performing a normality test with SciPy 75
Creating a NumPy-masked array 78
Disregarding negative and extreme values 80
Summary 83
Chapter 4: pandas Primer 85
Installing and exploring pandas 86
pandas DataFrames 87
pandas Series 90
Querying data in pandas 94
Statistics with pandas DataFrames 97
Data aggregation with pandas DataFrames 99
Concatenating and appending DataFrames 103
Joining DataFrames 105
Handling missing values 108
Dealing with dates 110
Pivot tables 113
Remote data access 114
Summary 117

Chapter 5: Retrieving, Processing, and Storing Data 119
Writing CSV files with NumPy and pandas 120
Comparing the NumPy .npy binary format and pickling
pandas DataFrames 122
Storing data with PyTables 124
Reading and writing pandas DataFrames to HDF5 stores 126
Reading and writing to Excel with pandas 129
Using REST web services and JSON 131
Reading and writing JSON with pandas 132
Parsing RSS and Atom feeds 134
Parsing HTML with Beautiful Soup 135
Summary 142
Chapter 6: Data Visualization 143
matplotlib subpackages 144
Basic matplotlib plots 144
Logarithmic plots 146
Scatter plots 148
Legends and annotations 150
Three-dimensional plots 153
Plotting in pandas 155
Lag plots 158
Autocorrelation plots 159
Plot.ly 160
Summary 163
Chapter 7: Signal Processing and Time Series 165
statsmodels subpackages 166
Moving averages 167
Window functions 168
Defining cointegration 170
Autocorrelation 173
Autoregressive models 176
ARMA models 179
Generating periodic signals 181
Fourier analysis 184
Spectral analysis 186
Filtering 187
Summary 189
Chapter 8: Working with Databases 191
Lightweight access with sqlite3 192
Accessing databases from pandas 194

SQLAlchemy 196
Installing and setting up SQLAlchemy 196
Populating a database with SQLAlchemy 198
Querying the database with SQLAlchemy 200
Pony ORM 201
Dataset – databases for lazy people 202
PyMongo and MongoDB 204
Storing data in Redis 206
Apache Cassandra 207
Summary 210
Chapter 9: Analyzing Textual Data and Social Media 211
Installing NLTK 212
Filtering out stopwords, names, and numbers 214
The bag-of-words model 216
Analyzing word frequencies 217
Naive Bayes classification 219
Sentiment analysis 222
Creating word clouds 225
Social network analysis 230
Summary 232
Chapter 10: Predictive Analytics and Machine Learning 233
A tour of scikit-learn 235
Preprocessing 236
Classification with logistic regression 238
Classification with support vector machines 240
Regression with ElasticNetCV 242
Support vector regression 245
Clustering with affinity propagation 248
Mean Shift 250
Genetic algorithms 252
Neural networks 257
Decision trees 259
Summary 261
Chapter 11: Environments Outside the Python Ecosystem
and Cloud Computing 263
Exchanging information with MATLAB/Octave 264
Installing rpy2 265
Interfacing with R 265
Sending NumPy arrays to Java 268
Integrating SWIG and NumPy 269

Integrating Boost and Python 272
Using Fortran code through f2py 274
Setting up Google App Engine 275
Running programs on PythonAnywhere 276
Working with Wakari 277
Summary 278
Chapter 12: Performance Tuning, Profiling, and Concurrency 279
Profiling the code 280
Installing Cython 284
Calling C code 288
Creating a process pool with multiprocessing 290
Speeding up embarrassingly parallel for loops with Joblib 293
Comparing Bottleneck to NumPy functions 294
Performing MapReduce with Jug 296
Installing MPI for Python 298
IPython Parallel 299
Summary 303
Appendix A: Key Concepts 305
Appendix B: Useful Functions 311
matplotlib 311
NumPy 312
pandas 313
Scikit-learn 314
SciPy 315
scipy.fftpack 315
scipy.signal 315
scipy.stats 315
Appendix C: Online Resources 31




二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2019-5-23 07:52:11
感谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2019-5-23 11:57:26
投我以木瓜,报之以琼琚。匪报也,永以为好也!

投我以木桃,报之以琼瑶。匪报也,永以为好也!

投我以木李,报之以琼玖。匪报也,永以为好也!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2019-5-23 13:17:03
感谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2019-5-23 15:13:52
You got to put the past behind you before you can move on.
你得抛开过去才能不断前进。

谢谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2019-5-23 23:36:48
谢谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群