为什么在面板数据模型中加入距离变量后所有的固定效应都不可以做 一坐固定效应就出现near singular matrix 网上说是多重共线性
而去掉距离变量固定效应模型可以做 当然加入距离变量随机效应和混合模型还是可以做的,距离变量时两地间的距离,是非实时变量,其他变量每年都是不一样的。
Dependent Variable: LEX?
Method: Pooled Least Squares
Date: 02/26/10 Time: 12:43
Sample: 1996 2007
Included observations: 12
Cross-sections included: 32
Total pool (unbalanced) observations: 364
Variable Coefficient Std. Error t-Statistic Prob.
LGDP? 1.357462 0.073127 18.56316 0.0000
LYYCZ -1.900830 0.222216 -8.553975 0.0000
LPOP? -0.356183 0.080583 -4.420076 0.0000
LDIS? -1.484503 0.117100 -12.67720 0.0000
D1? 1.796384 0.185167 9.701406 0.0000
R-squared 0.608922 Mean dependent var 2.225597
Adjusted R-squared 0.604565 S.D. dependent var 2.480347
S.E. of regression 1.559732 Akaike info criterion 3.740546
Sum squared resid 873.3623 Schwarz criterion 3.794079
Log likelihood -675.7794 Hannan-Quinn criter. 3.761823
Durbin-Watson stat 0.566239
Dependent Variable: LEX?
Method: Pooled EGLS (Cross-section random effects)
Date: 02/26/10 Time: 12:43
Sample: 1996 2007
Included observations: 12
Cross-sections included: 32
Total pool (unbalanced) observations: 364
Swamy and Arora estimator of component variances
Variable Coefficient Std. Error t-Statistic Prob.
C -37.17221 4.498887 -8.262534 0.0000
LGDP? 1.461493 0.120570 12.12155 0.0000
LYYCZ 2.403414 0.442128 5.436013 0.0000
LPOP? -0.310095 0.142446 -2.176923 0.0301
LDIS? -1.496250 0.212910 -7.027607 0.0000
D1? 0.115218 0.202255 0.569669 0.5693
Random Effects (Cross)
JAPAN--C -0.608722
USA--C 0.856706
REPKOREA--C -0.364327
GERMANY--C 0.555673
UK--C 0.130650
SPAIN--C 1.233330
CANADA--C 1.229468
NERTHERLANDS--C 0.857544
FRANCE--C -0.005394
BELGIUM--C 0.806858
RUSSIAN--C 0.109330
POLAND--C 0.986942
PORTUGAL--C 1.132892
THAILAND--C 0.236296
MALAYSIA--C 0.827124
PHILIPPINES--C -0.009824
ITALY--C -1.264803
SWEDEN--C 0.037794
DENMARK--C -0.020870
AUSTRALIA--C -0.298508
BRAZIL--C -4.109067
UKRAINE--C 0.096545
INDONESIA--C -0.283313
ISRAEL--C -0.791934
LITHUANIA--C 1.071630
EGYPT--C -1.867201
SINGAPORE--C 0.445900
NEWZEALAND--C 0.343785
GREECE--C -0.040678
NORWAY--C -0.916201
MEXICO--C -0.404626
VIETNAM--C 0.026999
Effects Specification
S.D. Rho
Cross-section random 0.769726 0.3540
Idiosyncratic random 1.039721 0.6460
Weighted Statistics
R-squared 0.548124 Mean dependent var 0.804416
Adjusted R-squared 0.541813 S.D. dependent var 1.620652
S.E. of regression 1.104849 Sum squared resid 437.0076
F-statistic 86.85046 Durbin-Watson stat 0.786043
Prob(F-statistic) 0.000000
Unweighted Statistics
R-squared 0.649157 Mean dependent var 2.225597
Sum squared resid 783.5099 Durbin-Watson stat 0.438421
而本身我的这个建立固定效应模型应该是最好的,因为选择的样本占全部的85%以上,不明白为何距离变量ldis?加入后就不可以做固定效应分析了