8 Dynamical Systems and Dierential Equations 191
8.1 Introduction........................191
8.2 DynamicalSystems....................192
8.3 PopulationGrowth ....................193
8.4 Population Growth with Limited Carrying Capacity . 194
8.5 TheLotka-VolterraPredator-PreyModel........195
8.6 DynamicalSystemsTheory ...............199
8.6.1 ExistenceandUniqueness..............200
8.6.2 TheLinearizationTheorem.............201
8.7 DynamicalSystemsinOneDimension .........202
8.8 DynamicalSystemsinTwoDimensions.........204
8.9 ExercisesinTwo-DimensionalLinearSystems.....208
8.10CulturalDynamics ....................209
8.11 A Lotka-Volterra Model with Limited Carrying Capacity210
8.12TakeNoPrisoners ....................210
8.13TheHartman-GrobmanTheorem............211
8.14 Special Features of Two-Dimensional Dynamical Sys-
tems ............................212
8.15 Non-Hyperbolic Dynamical Systems in Two Dimensions213
8.16 Liapunov’s Theorem . . . . . ..............213
9 Evolutionary Dynamics 215
9.1 Introduction........................215
9.2 TheOriginsofEvolutionaryDynamics .........216
9.2.1 StrategiesasReplicators...............217
9.2.2 ADynamicHawk/DoveGame ...........220
9.2.3 Sexual Reproduction, Biological Fitness, and the
ReplicatorDynamic .................222
9.3 PropertiesoftheReplicatorEquation..........224
9.4 Characterizing the Two-Variable Replicator Dynamic . 225
9.5 Do Dominated Strategies Survive under a Replicator
Dynamic? .........................226
9.6 Nash Equilibria and Stability under a Replicator Dy-
namic ...........................227
9.7 Evolutionary Stability and Evolutionary Equilibrium . 229
9.8 Bayesian Perfection, Stable Sets and the Replicator
Dynamic..........................230
9.9 InvasionofthePureStrategyMutants,II .......230
9.10 A Generalization of Rock, Paper, and Scissors . . . . . 231
9.11 Uta Stansburia in Motion ................232
9.12 The Dynamics of Rock-Paper-Scissors and Related
Games ...........................233
9.13 Replicator Dynamics, the Lotka-Volterra Model, and
Biodiversity ........................234
9.14AsymmetricEvolutionaryGames ............236
9.15 Asymmetric Evolutionary Games: Reviewing the Troups240
9.16TheEvolutionofTrustandHonesty ..........240
9.17TheLoraxesandThoraxes................242
9.18 The Replicator Dynamic, Cultural Transmission, and
SocialImitation......................243
10 Markov Economies and Stochastic Dynamical Systems 246
10.1Introduction........................246
10.2 The Emergence of a Money in a Markov Economy . . 247
10.2.1 SimulatingAMonetaryEconomy..........251
10.3GoodVibrations .....................254
10.4AdaptiveLearning ....................256
10.4.1TheSteadyStateofaMarkovChain........258
10.5 Adaptive Learning When not all Conventions are Equal259
10.6 Adaptive Learning in a Pure Coordination Game with
Errors ...........................260
10.7 Stochastic Stability . . . . . . ..............261
11 Homo Reciprocans, Homo Egualis and other Contribu-
tors to the Human Behavioral Repertoire 263
11.1Introduction........................263
11.2ModelingtheHumanActor ...............265
11.2.1 Interpreting the Results of Experimental Game
Theory ........................267
11.2.2 Self-InterestandRationality.............269
11.3 Behavioral Economics: Games against Nature and
AgainstOurselves.....................270
11.3.1 Time Inconsistency and Hyperbolic Discounting . 271
11.3.2 Choice Under Uncertainty: Logic and Heuristics . 273
11.3.3 Loss Aversion and Status Quo Bias.........276
11.4 Experimental Game Theory: The Laboratory Meets
StrategicInteraction ...................277
11.4.1TheUltimatumGame................279
11.4.2ThePublicGoodsGame...............280
11.4.3ThePublicGoodsGamewithRetaliation.....282
11.4.4TheCommonPoolResourceGame.........282
11.5HomoEgualis .......................284
11.6 Homo Reciprocans: Modeling Strong Reciprocity . . . 287
11.7AltruismandAssortativeInteractions .........292
11.8TheEvolutionofStrongReciprocity ..........297
11.9 Homo Parochius: Modeling Insider-Outsider Relations 303
12 Learning Who Your Friends Are: Bayesian Games and
Private Information 309
12.1PrivateInformationandBayesianGames........309
12.2 The Role of Beliefs in Games with Private Information 313
12.3HagglingattheBazaar..................316
12.4AdverseSelection.....................319
12.5AMarketforLemons...................320
12.6ChoosinganExorcist...................321
12.7AFirstPriceSealed-BidAuction ............324
12.8ACommonValueAuction:TheWinner’sCurse....325
12.9CommonValueAuctionII................325
12.10Predatory Pricing: Pooling and Separating Equilibria . 327
12.11LimitPricing .......................329
12.12ASimpleLimitPricingModel..............331
13 When it Pays to be Truthful: Signaling Games and Com-
munications Equilibria 332
13.1 Signalling as a Coevolutionary Process . . . ......332
13.2 A Generic Signalling Game . . . . . . . . . ......333
13.3IntroductoryOers....................335
13.4WebSites(forSpiders) .................335
13.5 Sex and Piety: The Darwin-Fisher Model of Runaway
SexualSelection......................337
13.6BiologicalSignalsasHandicaps .............342
13.7TheShepherdswhoNeverCryWolf ..........344
13.8MyBrother’sKeeper...................346
13.9HonestSignallyamongPartialAltruists ........348
13.10Educational Signalling I . ................351
13.11EducationasAScreeningDevice ............353
13.12Capital as a Signaling Device: A Model of Productiv-
ityEnhancingRedistributions..............355
14 Bosses and Workers, Landlords and Peasants, and other
Principal-Agent Models 357
14.1IntroductiontothePrincipal-AgentModel.......357
14.2LaborDisciplinewithMonitoring............358
14.3LaborasGiftExchange .................360
14.4LaborDisciplinewithProtSignaling .........361
14.4.1 Properties of the Labor Discipline Model . . . . . 364
14.5PeasantsandLandlords .................365
14.6Mr.Smith’sCarInsurance................366
14.7AGenericOne-ShotPrincipalAgentModel ......367
15 Axiomatic and Game Theoretic Models of Bargaining 370
15.1Introduction........................370
15.2TheNashBargainingModel...............371
15.3 Risk Aversion and the Nash Bargaining Solution . . . 374
15.4 The St ahl-Rubinstein Bargaining Model with Respo-
nentOutsideOptions...................376
15.5BargainingwithTwo-SidedOutsideOptions......377
15.6 How the St ahl-Rubinstein Bargaining Model Becomes
theNashBargainingModel ...............378
15.7 Zeuthen Lotteries and the Nash Bargaining Solution . 379
15.8BargainingwithFixedCosts...............380
15.9BargainingwithIncompleteInformation ........381
16 Probability and Decision Theory 382
16.1 Probability Spaces . . . . . . ..............382
16.2 Conditional Probability . . . . ..............383
16.3Bayes’Rule ........................383
16.4DrugTesting .......................384
16.5ABoltFactory ......................384
16.6 Color Blindness . .....................384
16.7Urns ............................384
16.8TheMontyHallGame ..................384
16.9 The Logic of Murder and Abuse . . . . . . . . . ....386
16.9.1ThePrincipleofInsucientReason ........388
16.10Ah,ThoseKids ......................388
16.11TheGreensandtheBlacks................388
16.12Laplace’sLawofSuccession ...............389
16.13TheBrainandKidneyProblem.............389
16.14SexualHarassmentontheJob..............389
16.15TheValueofEye-WitnessTestimony..........389
16.16TheEndoftheWorld ..................390
16.17BillandHarry.......................390
16.18WhenWeaknessisStrength ...............391
16.19MarkovChains ......................391
16.19.1TheErgodicTheoremforMarkovChains .....397
16.19.2TheSisyphusianMarkovChain...........398
16.19.3Andrei Andreyevich’s Two Urn Problem . . ....399
16.20Preferences and Expected Utility . . . . . . . . ....400
16.21Exceptions to the Expected Utility Principle . . ....405
16.22Risk Behavior and the Shape of the Utility Function . 406