Hardcover: 328 pages Publisher: Wiley-Interscience; 2 edition (August 24, 2000) Language: English ISBN-10: 0471370460 ISBN-13: 978-0471370468 Part I METHODS
1 The Basic Method 1
1.1 The Probabilistic Method 1
1.2 Graph Theory 3
1.3 Combinatorics 6
1.4 Combinatorial Number Theory 8
1.5 Disjoint Pairs 9
1.6 Exercises 10
The Probabilistic Lens: The Erd 􀀀 os-Ko-Rado
Theorem 12
2 Linearity of Expectation 13
2.1 Basics 13
2.2 Splitting Graphs 14
2.3 Two Quickies 16
2.4 Balancing Vectors 17
2.5 Unbalancing Lights 18
2.6 Without Coin Flips 20
2.7 Exercises 20
The Probabilistic Lens: Br´egman’s Theorem 22
3 Alterations 25
3.1 Ramsey Numbers 25
3.2 Independent Sets 27
3.3 Combinatorial Geometry 28
3.4 Packing 29
3.5 Recoloring 30
3.6 Continuous Time 33
3.7 Exercises 37
The Probabilistic Lens: High Girth and
High Chromatic Number 38
4 The Second Moment 41
4.1 Basics 41
4.2 Number Theory 42
4.3 More Basics 45
4.4 Random Graphs 47
4.5 Clique Number 51
4.6 Distinct Sums 52
4.7 The R¨odl Nibble 53
4.8 Exercises 58
The Probabilistic Lens: Hamiltonian Paths 60
5 The Local Lemma 63
5.1 The Lemma 63
5.2 Property and Multicolored Sets of Real Numbers 65
5.3 Lower Bounds for Ramsey Numbers 67
5.4 A Geometric Result 68
5.5 The Linear Arboricity of Graphs 69
5.6 Latin Transversals 73
5.7 The Algorithmic Aspect 74
5.8 Exercises 77
The Probabilistic Lens: Directed Cycles 78
6 Correlation Inequalities 81
6.1 The Four Functions Theorem of Ahlswede and Daykin 82
6.2 The Inequality 84
6.3 Monotone Properties 86
6.4 Linear Extensions of Partially Ordered Sets 88
6.5 Exercises 90
The Probabilistic Lens: Tur´an’s Theorem 91
7 Martingales and
Tight Concentration 93
7.1 Definitions 93
7.2 Large Deviations 95
7.3 Chromatic Number 97
7.4 Two General Settings 99
7.5 Four Illustrations 103
7.6 Talagrand’s Inequality 105
7.7 Applications of Talagrand’s Inequality 108
7.8 Kim-Vu Polynomial Concentration 110
7.9 Exercises 111
The Probabilistic Lens: Weierstrass Approximation Theorem 113
8 The Poisson Paradigm 115
8.1 The Janson Inequalities 115
8.2 The Proofs 117
8.3 Brun’s Sieve 119
8.4 Large Deviations 122
8.5 Counting Extensions 123
8.6 Counting Representations 125
8.7 Further Inequalities 128
8.8 Exercises 129
The Probabilistic Lens: Local Coloring 130
9 Pseudo-Randomness 133
9.1 The Quadratic Residue Tournaments 134
9.2 Eigenvalues and Expanders 137
9.3 Quasi-Random Graphs 142
9.4 Exercises 149
The Probabilistic Lens: Random Walks 150
Part II TOPICS
10 Random Graphs 155
10.1 Subgraphs 156
10.2 Clique Number 158
10.3 Chromatic Number 160
10.4 Branching Processes 161
10.5 The Giant Component 165
10.6 Inside the Phase Transition 168
10.7 Zero-One Laws 171
10.8 Exercises 178
The Probabilistic Lens: Counting Subgraphs 180
11 Circuit Complexity 183
11.1 Preliminaries 183
11.2 Random Restrictions and Bounded Depth Circuits 185
11.3 More on Bounded-Depth Circuits 189
11.4 Monotone Circuits 191
11.5 Formulae 194
11.6 Exercises 196
The Probabilistic Lens: Maximal Antichains 197
12 Discrepancy 199
12.1 Basics 199
12.2 Six Standard Deviations Suffice 20112.3 Linear and Hereditary Discrepancy 204
12.4 Lower Bounds 207
12.5 The Beck-Fiala Theorem 209
12.6 Exercises 210
The Probabilistic Lens: Unbalancing Lights 212
13 Geometry 215
13.1 The Greatest Angle among Points in Euclidean Spaces 216
13.2 Empty Triangles Determined by Points in the Plane 217
13.3 Geometrical Realizations of Sign Matrices 219
13.4
-Nets and VC-Dimensions of Range Spaces 220
13.5 Dual Shatter Functions and Discrepancy 225
13.6 Exercises 228
The Probabilistic Lens: Efficient Packing 229
14 Codes, Games and Entropy 231
14.1 Codes 231
14.2 Liar Game 233
14.3 Tenure Game 236
14.4 Balancing Vector Game 237
14.5 Nonadaptive Algorithms 239
14.6 Entropy 240
14.7 Exercises 245
The Probabilistic Lens: An Extremal Graph 246
15 Derandomization 249
15.1 The Method of Conditional Probabilities 249
15.2 -Wise Independent Random Variables in Small
Sample Spaces 253
15.3 Exercises 257
The Probabilistic Lens: Crossing Numbers,
Incidences, Sums and
Products 259
Appendix A Bounding of Large Deviations 263
A.1 Bounding of Large Deviations 263
A.2 Exercises 271
The Probabilistic Lens: Triangle-free graphs have
large independence numbers 272
Appendix B Paul Erd 􀀀 os 275
B.1 Papers 275
B.2 Conjectures 277
B.3 On Erd 􀀀 os 278
B.4 Uncle Paul 279
Subject Index 283
Author Index 287
References 291
附件列表