from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import LabelEncoder
#给object型变量编码
encode=LabelEncoder()
table.uid=encode.fit_transform(table.uid)
table.roomid=encode.fit_transform(table.roomid)
X_missing_reg=table.copy()
#提取有缺失值字段的索引
sortindex = np.argsort(X_missing_reg.isnull().sum(axis=0))[::-1].values
for i in sortindex:
#构建我们的新特征矩阵和新标签
df = X_missing_reg
fillc = df.iloc[:,i]
df = df.iloc[:,df.columns != i]
#在新特征矩阵中,对含有缺失值的列,进行0的填补
df_0 =SimpleImputer(missing_values=np.nan,
strategy=\'constant\',fill_value=0).fit_transform(df)
#找出我们的训练集和测试集
Ytrain = fillc[fillc.notnull()]
Ytest = fillc[fillc.isnull()]
Xtrain = df_0[Ytrain.index,:]
Xtest = df_0[Ytest.index,:]
#用随机森林回归来填补缺失值
rfc = RandomForestRegressor(n_estimators=100)
rfc = rfc.fit(Xtrain, Ytrain)
Ypredict = rfc.predict(Xtest)
#将填补好的特征返回到我们的原始的特征矩阵中
X_missing_reg.loc[X_missing_reg.iloc[:,i].isnull(),X_missing_reg.columns] = Ypredict
table=X_missing_reg.copy()
table.isnull().sum()