1. 盖帽法
盖帽法将某连续变量均值上下三倍标准差范围外的记录替换为均值上下三倍标准差值,即盖帽处理(图5-10)。

▲图5-10:盖帽法处理噪声值示例
Python中可自定义函数完成盖帽法。如下所示,参数x表示一个pd.Series列,quantile指盖帽的范围区间,默认凡小于百分之1分位数和大于百分之99分位数的值将会被百分之1分位数和百分之99分位数替代:
>def cap(x,quantile=[0.01,0.99]): """盖帽法处理异常值 
Args: x:pd.Series列,连续变量 
quantile:指定盖帽法的上下分位数范围 
"""
# 生成分位数 
Q01,Q99=x.quantile(quantile).values.tolist()
# 替换异常值为指定的分位数 
if Q01 > x.min(): 
x = x.copy() 
x.loc[x<Q01] = Q01 
if Q99 < x.max(): 
x = x.copy() 
x.loc[x>Q99] = Q99 
return(x)现生成一组服从正态分布的随机数,sample.hist表示产生直方图,更多绘图方法会在下一章节进行讲解:
>sample = pd.DataFrame({'normal':np.random.randn(1000)})
>sample.hist(bins=50)
▲图5-11:未处理噪声时的变量直方图
对pandas数据框所有列进行盖帽法转换,可以以如下写法,从直方图对比可以看出盖帽后极端值频数的变化。
>new = sample.apply(cap,quantile=[0.01,0.99])
>new.hist(bins=50)
▲图5-12:处理完噪声后的变量直方图
2. 分箱法
分箱法通过考察数据的“近邻”来光滑有序数据的值。有序值分布到一些桶或箱中。
分箱法包括等深分箱:每个分箱中的样本量一致;等宽分箱:每个分箱中的取值范围一致。直方图其实首先对数据进行了等宽分箱,再计算频数画图。
比如价格排序后数据为:4、8、15、21、21、24、25、28、34
将其划分为(等深)箱:
- 箱1:4、8、15
- 箱2:21、21、24
- 箱3:25、28、34
 
 
将其划分为(等宽)箱:
- 箱1:4、8
- 箱2:15、21、21、24
- 箱3:25、28、34
 
 
分箱法将异常数据包含在了箱子中,在进行建模的时候,不直接进行到模型中,因而可以达到处理异常值的目的。
pandas的qcut函数提供了分箱的实现方法,下面介绍如何具体实现。
等宽分箱:qcut函数可以直接进行等宽分箱,此时需要的待分箱的列和分箱个数两个参数,如下所示,sample数据的int列为从10个服从标准正态分布的随机数:
>sample =pd.DataFrame({'normal':np.random.randn(10)})
>sample
normal
0 0.065108
1 -0.597031
2 0.635432
3 -0.491930
4 -1.894007
5 1.623684
6 1.723711
7 -0.225949
8 -0.213685
9 -0.309789现分为5箱,可以看到,结果是按照宽度分为5份,下限中,cut函数自动选择小于列最小值一个数值作为下限,最大值为上限,等分为五分。结果产生一个Categories类的列,类似于R中的factor,表示分类变量列。
此外弱数据存在缺失,缺失值将在分箱后将继续保持缺失,如下所示:
>pd.cut(sample.normal,5) 
0 (-0.447, 0.277] 
1 (-1.17, -0.447] 
2 (0.277, 1.0] 
3 (-1.17, -0.447] 
4 (-1.898, -1.17] 
5 (1.0, 1.724] 
6 (1.0, 1.724] 
7 (-0.447, 0.277] 
8 (-0.447, 0.277] 
Name: normal, dtype: category
Categories (5, interval[float64]): [(-1.898, -1.17] < (-1.17, -0.447] < (-0.447, 0.277] < (0.277, 1.0] < (1.0, 1.724]]这里也可以使用labels参数指定分箱后各个水平的标签,如下所示,此时相应区间值被标签值替代:
> pd.cut(sample.normal,bins=5,labels=[1,2,3,4,5])
0 1
1 1
2 2
3 2
4 3
5 3
6 4
7 4
8 5
9 5
Name: normal, dtype: category
Categories (5, int64): [1 < 2 < 3 < 4 < 5]

标签除了可以设定为数值,也可以设定为字符,如下所示,将数据等宽分为两箱,标签为‘bad’,‘good’:
>pd.cut(sample.normal,bins=2,labels=['bad','good'])
0 bad
1 bad
2 bad
3 bad
4 bad
5 good
6 good
7 good
8 good
9 good
Name: normal, dtype: category
Categories (2, object): [bad < good]
等深分箱:等深分箱中,各个箱的宽度可能不一,但频数是几乎相等的,所以可以采用数据的分位数来进行分箱。依旧以之前的sample数据为例,现进行等深度分2箱,首先找到2箱的分位数:
>sample.normal.quantile([0,0.5,1])
0.0 0.0
0.5 4.5
1.0 9.0
Name: normal, dtype: float64在bins参数中设定分位数区间,如下所示完成分箱,include_lowest=True参数表示包含边界最小值包含数据的最小值:
>pd.cut(sample.normal,bins=sample.normal.quantile([0,0.5,1]), 
include_lowest=True)
0 [0, 4.5]
1 [0, 4.5]
2 [0, 4.5]
3 [0, 4.5]
4 [0, 4.5]
Name: normal, dtype: category
Categories (2, object): [[0, 4.5] < (4.5, 9)]
此外也可以加入label参数指定标签,如下所示:
>pd.cut(sample.normal,bins=sample.normal.quantile([0,0.5,1]), include_lowest=True)
0 bad
1 bad
2 bad
3 bad
4 bad
5 good
6 good
7 good
8 good
9 good
Name: normal, dtype: category
Categories (2, object): [bad < good]3. 多变量异常值处理-聚类法
通过快速聚类法将数据对象分组成为多个簇,在同一个簇中的对象具有较高的相似度,而不同的簇之间的对象差别较大。聚类分析可以挖掘孤立点以发现噪声数据,因为噪声本身就是孤立点。
本案例考虑两个变量income和age,散点图如图5-13所示,其中A、B表示异常值:

▲图5-13:多变量异常值示例
对于聚类方法处理异常值,其步骤如下所示:
输入:数据集S(包括N条记录,属性集D:{年龄、收入}),一条记录为一个数据点,一条记录上的每个属性上的值为一个数据单元格。数据集S有N×D个数据单元格,其中某些数据单元格是噪声数据。
输出:孤立数据点如图所示。孤立点A是我们认为它是噪声数据,很明显它的噪声属性是收入,通过对收入变量使用盖帽法可以剔除A。
另外,数据点B也是一个噪声数据,但是很难判定它在哪个属性上的数据出现错误。这种情况下只可以使用多变量方法进行处理。
常用检查异常值聚类算法为K-means聚类,会在后续章节中详细介绍,本节不赘述。